• 제목/요약/키워드: Thin Film transistors

Search Result 870, Processing Time 0.026 seconds

An Electrical Characteristics on the Pentacene-Based Organic Thin-Film Transistors using PVA Alignment Layer (PVA 배열층을 이용한 펜타신 유기 박막 트랜지스터의 전기적 특성)

  • Jun, Hyeon-Sung;Oh, Hwan-Sool
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.177-182
    • /
    • 2010
  • The pentacene-based organic thin film transistors(OTFTs) using polyvinylalcohol(PVA) alignment layer were fabricated on the $SiO_2$ evaporated to n-type (111) Si substrates. The pentacene film was deposited by thermally evaporated at $10^{-7}$ torr. X-ray diffraction (XRD) and atomic force microscope(AFM) measurement showed pentacene film which deposited on rubbed PVA layers were partially crystallized at (001) plane. The pentacene OTFTs with PVA layers rubbed perpendicular to the direction of current flow was shown to align better orientation than parallel rubbed case and thus to enhance the mobility and saturation current by a factor of 2.3 respectively. We obtained mobility by 0.026 $cm^2$/Vs and on-off current ratio by ${\sim}10^8$.

Fabrication of Organic Thin-Film Transistor Using Vapor Deposition Polymerization Method (Vapor Deposition Polymerization 방법을 이용한 유기 박막 트렌지스터의 제작)

  • 표상우;김준호;김정수;심재훈;김영관
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.190-193
    • /
    • 2002
  • The processing technology of organic thin-film transistors (Ons) performances have improved fur the last decade. Gate insulator layer has generally used inorganic layer, such as silicon oxide which has properties of a low electrical conductivity and a high breakdown field. However, inorganic insulating layers, which are formed at high temperature, may affect other layers termed on a substrate through preceding processes. On the other hand, organic insulating layers, which are formed at low temperature, dose not affect pre-process. Known wet-processing methods for fabricating organic insulating layers include a spin coating, dipping and Langmuir-Blodgett film processes. In this paper, we propose the new dry-processing method of organic gate dielectric film in field-effect transistors. Vapor deposition polymerization (VDP) that is mainly used to the conducting polymers is introduced to form the gate dielectric. This method is appropriate to mass production in various end-user applications, for example, flat panel displays, because it has the advantages of shadow mask patterning and in-situ dry process with flexible low-cost large area displays. Also we fabricated four by four active pixels with all-organic thin-film transistors and phosphorescent organic light emitting devices.

  • PDF

The Effects of Oxygen Partial Pressure and Post-annealing on the Properties of ZnO-SnO2 Thin Film Transistors (ZnO-SnO2 투명박막트랜지스터의 특성에 미치는 산소분압 및 후속열처리의 영향)

  • Ma, Tae-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.304-308
    • /
    • 2012
  • Transparent thin film transistors (TTFT) were fabricated using the rf magnetron sputtered ZnO-$SnO_2$ films as active layers. A ceramic target whose Zn atomic ratio to Sn is 2:1 was employed for the deposition of ZnO-$SnO_2$ films. To study the post-annealing effects on the properties of TTFT, ZnO-$SnO_2$ films were annealed at $200^{\circ}C$ or $400^{\circ}C$ for 5 min before In deposition for source and drain electrodes. Oxygen was added into chamber during sputtering to raise the resistivity of ZnO-$SnO_2$ films. The effects of oxygen addition on the properties of TTFT were also investigated. 100 nm $Si_3N_4$ film grown on 100 nm $SiO_2$ film was used as gate dielectrics. The mobility, $I_{on}/I_{off}$, interface state density etc. were obtained from the transfer characteristics of ZnO-$SnO_2$ TTFTs.

Effects of Organic Passivation Layers by Vapor Deposition Polymerization(VDP) for Organic Thin-Film Transistors(OTFTs) (Vapor Deposition Polymerization(VDP)을 이용한 페시베이션이 유기박막트렌지스터에 주는 영향)

  • Park, Il-Houng;Hyung, Gun-Woo;Choi, Hak-Bum;Kim, Jae-Hyeuk;Kim, Woo-Young;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.114-115
    • /
    • 2007
  • In this paper, it was demonstrated that organic thin-film transistors (OTFTs) were fabricated with the organic passivation layer by vapor deposition polymerization (VDP) processing, In order to form polymeric film as an passivation layer, VDP process was also introduced instead of spin-coating process, where polymeric film was co-deposited by high-vacuum thermal evaporation from 6FDA and ODA followed by curing, Field effect mobility, threshold voltage, and on-off current ratio with 450-nm-thick organic passivation layer were about $0.21\;cm^2/Vs$, IV, and $1\;{\times}\;10^5$, respectively.

  • PDF

Thermal treatments effects on the properties of zinc tin oxide transparent thin film transistors (Zinc tin oxide 투명박막트랜지스터의 특성에 미치는 열처리 효과)

  • Ma, Tae Young
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.375-379
    • /
    • 2019
  • $ZnO-SnO_2(ZTO)$ was deposited by RF magnetron sputtering using a ceramic target whose Zn atomic ratio to Sn is 2:1 as a target, and the crystal structure variation with thermal treats was investigated. Transparent thin film transistors (TTFT) were fabricated using the ZTO films as active layers. About 100 nm-thick $Si_3N_4$ film grown on 100 nm-thick $SiO_2$ film was adopted as gate dielectrics. The mobility, threshold voltage, $I_{on}/I_{off}$, and interface trap density were obtained from the transfer characteristics of ZTO TTFTs. The effects of substrate temperature, and post-annealing on the property variation of ZTO TTFT were analyzed.

Improvement in Electrical Characteristics of Solution-Processed In-Zn-O Thin-Film Transistors Using a Soft Baking Process (Soft-Baking 처리를 통한 용액 공정형 In-Zn-O 박막 트랜지스터의 전기적 특성 향상)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.566-571
    • /
    • 2017
  • A soft baking process was used to enhance the electrical characteristics of solution-processed indium-zincoxide (IZO) thin-film transistors (TFTs). We demonstrate a stable soft baking process using a hot plate in air to maintain the electrical stability and improve the electrical performance of IZO TFTs. These oxide transistors exhibited good electrical performance; a field-effect mobility of $7.9cm^2/Vs$, threshold voltage of 1.4 V, sub-threshold slope of 0.5 V/dec, and a current on/off ratio of $2.9{\times}10^7$ were measured. To investigate the static response of our solutionprocessed IZO TFTs, simple resistor load type inverters were fabricated by connecting a resistor (5 or $10M{\Omega}$). Our IZO TFTs, which were manufactured using the soft baking process at a baking temperature of $120^{\circ}C$, performed well at the operating voltage, and are therefore a good candidate for use in advanced logic circuits and transparent display backplanes.

Characterization of zinc tin oxide thin films by UHV RF magnetron co-sputter deposition

  • Hong, Seunghwan;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.307.1-307.1
    • /
    • 2016
  • Amorphous zinc tin oxide (ZTO) thin films are being widely studied for a variety electronic applications such as the transparent conducting oxide (TCO) in the field of photoelectric elements and thin film transistors (TFTs). Thin film transistors (TFTs) with transparent amorphous oxide semiconductors (TAOS) represent a major advance in the field of thin film electronics. Examples of TAOS materials include zinc tin oxide (ZTO), indium gallium zinc oxide (IGZO), indium zinc oxide, and indium zinc tin oxide. Among them, ZTO has good optical and electrical properties (high transmittance and larger than 3eV band gap energy). Furthermore ZTO does not contain indium or gallium and is relatively inexpensive and non-toxic. In this study, ZTO thin films were formed by UHV RF magnetron co-sputter deposition on silicon substrates and sapphires. The films were deposited from ZnO and SnO2 target in an RF argon and oxygen plasma. The deposition condition of ZTO thin films were controlled by RF power and post anneal temperature using rapid thermal annealing (RTA). The deposited and annealed films were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), ultraviolet and visible light (UV-VIS) spectrophotometer.

  • PDF

Progess in Fabrication Technologies of Polycrystalline Silicon Thin Film Transistors at Low Temperatures

  • Sameshima, T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.129-134
    • /
    • 2004
  • The development of fabrication processes of polycrystalline-silicon-thin-film transistors (poly-Si TFTs) at low temperatures is reviewed. Rapid crystallization through laser-induced melt-regrowth has an advantage of formation of crystalline silicon films at a low thermal budget. Solid phase crystallization techniques have also been improved for low temperature processing. Passivation of $SiO_2$/Si interface and grain boundaries is important to achieve high carrier transport properties. Oxygen plasma and $H_2O$ vapor heat treatments are proposed for effective reduction of the density of defect states. TFTs with high performance is reported.

  • PDF

Molecular Aligning Properties of a Dielectric Layer of Polymer-Ceramic Nanocomposite for Organic Thin-Film Transistors

  • Kim, Chi-Hwan;Kim, Sung-Jin;Yu, Chang-Jae;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1200-1203
    • /
    • 2004
  • We investigated the molecular aligning capability of a polymer layer containing ceramic nanoparticles which can be used as a gate insulator of organic thin-film transistors (OTFTs). Because of the enhanced dielectric properties arising from the nanoparticles and molecular aligning properties of the polymer, the composite layer provides excellent mobility characteristics of the OTFTs.

  • PDF