• Title/Summary/Keyword: Thiessen Network

Search Result 23, Processing Time 0.025 seconds

Evaluation of Raingauge Network using Area Average Rainfall Estimation and the Estimation Error (면적평균강우량 산정을 통한 강우관측망 평가 및 추정오차)

  • Lee, Ji Ho;Jun, Hwan Don
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.103-112
    • /
    • 2014
  • Area average rainfall estimation is important to determine the exact amount of the available water resources and the essential input data for rainfall-runoff analysis. Like that, the necessary criterion for accurate area average rainfall estimate is the uniform spatial distribution of raingauge network. In this study, we suggest the spatial distribution evaluation methodology of raingauge network to estimate better area average rainfall and after the suggested method is applied to Han River and Geum River basin. The spatial distribution of rainfall network can be quantified by the nearest neighbor index. In order to evaluate the effects of the spatial distribution of rainfall network by each basin, area average rainfall was estimated by arithmetic mean method, the Thiessen's weighting method and estimation theory for 2013's rainfall event, and evaluated the involved errors by each cases. As a result, it can be found that the estimation error at the best basin of spatial distribution was lower than the worst basin of spatial distribution.

Rearranging Emergency Medical Service Region Using GIS Network Analysis - Daejeon Metropolitan City Case Study (GIS 네트워크 분석을 활용한 응급의료서비스 권역 재조정 방안 - 대전광역시 사례 연구)

  • Kwon, Pil;Lee, Young Min;Huh, Yong;Yu, Ki Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.3
    • /
    • pp.11-21
    • /
    • 2015
  • Emergency Medical Service(EMS) has become focused due to all kinds of disaster and a great number of casualties. The 119 emergency vehicles' dispatching methods are now being focused, for travel time of ambulances are the critical components in terms of saving human lives. Therefore, this study tried to rearrange 119 EMS regions more efficiently. For this study, Daejeon Metropolitan City's real call cases were analyzed. In order to rearrange the regions, OD Cost Matrix analysis was performed between 800 thousands random points and 26 departments in the Daejoen Metropolitan City. By creating Thiessen Polygon from the random points, a new region was created. As a results, average areas of the regions were reduces from 32 square kilometers to 20 square kilometers, and average time of arrivals are were also improved. Hence, if related organizations plan to rearrange EMS regions, they may utilize this study.

Parameter Estimation of VfloTM Distributed Rainfall-Runoff Model by Areal Rainfall Calculation Methods - For Dongchon Watershed of Geumho River - (유역 공간 강우 산정방법에 따른 VfloTM 분포형 강우-유출 모형의 매개변수 평가 - 금호강 동촌 유역을 대상으로 -)

  • Kim, Si Soo;Jung, Chung Gil;Park, Jong Yoon;Jung, Sung Won;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • This study is to evaluate the parameter behavior of VfloTM distributed rainfall-runoff model by applying 3 kinds of rainfall interpolation methods viz. Inverse Distance Weighting (IDW), Kriging (KRI), and Thiessen network (THI). For the 1,544 $km^2$ Dongcheon watershed of Nakdong river, the model was calibrated using 4 storm events in 2007 and 2009, and validated using 2 storm events in 2010. The model was calibrated with Nash-Sutcliffe model efficiency of 0.97 for IDW, 0.94 for KRI, and 0.95 for THI respectively. For the sensitive parameters, the saturated hydraulic conductivity ($K_{sat}$) for IDW, KRI, and THI were 0.33, 0.31, and 0.43 cm/hr, and the soil suction head at the wetting front (${\Psi}_f$) were 4.10, 3.96, and 5.19 cm $H_2O$ respectively. These parameters affected the infiltration process by the spatial distribution of antecedent moisture condition before a storm.

Grid-Based KlneMatic Wave STOrm Funoff Yoncheon Dam watershed. (격자기반의 운동파 강우유출모형 개발(II) - 적용 예(연천댐 유역을 대상으로) -)

  • Kim, Seong-Jun;Chae, Hyo-Seok;Sin, Sa-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.309-315
    • /
    • 1998
  • The grid-based KIneMatic wave STOrm Runoff Model (KIMSTORM) was applied to YoncheonDam watershed (1,875km2) located in the Imjin river basin of the Korea. Six maps which are DEM(Digital Elevation Model), stream, flow path, soil, land use and Thiessen network, were used for input data. The simulated streamflows resulting from two selected storm events agreed well with the observed flows at the watershed outlet. The results of temporal variations and spatial distributions are presented by using GRASS. Keyword : grid-based, storm-runoff model, GRASS-GIS, Yoncheon dam watershed.

  • PDF

Analysis of Urban Flood Damage Using SWMM5 and FLUMEN Model of Sadang Area in Korea

  • Li, Heng;Kim, Yeonsu;Lee, Seungsoo;Song, Miyeon;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.396-396
    • /
    • 2015
  • Frequent urban floods affect the human safety and economic properties due to a lack of the capacity of drainage system and the increased frequency of torrential rainfall. The drainage system has played an important role in flooding control, so it is necessary to establish the effective countermeasures considering the connection between drainage system and surface flow. To consider the connection, we selected SWMM5 model for analyzing transportation capacity of drainage system and FLUMEN model for calculating inundation depth and time variation of inundation area. First, Thiessen method is used to delineate the sub-catchments effectively base on drainage network data in SWMM5. Then, the output data of SWMM5, hydrograph of each manhole, were used to simulate FLUMEN to obtain inundation depth and time variation of inundation area. The proposed method is applied to Sadang area for the event occurred in $27^{th}$ of July, 2011. A total of 11 manholes, we could check the overflow from the manholes during that event as a result of the SWMM5 simulation. After that, FLUMEN was utilized to simulate overland flow using the overflow discharge to calculate inundation depth and area on ground surface. The simulated results showed reasonable agreements with observed data. Through the simulations, we confirmed that the main reason of the inundation was the insufficient transportation capacities of drainage system. Therefore cooperation of both models can be used for not only estimating inundation damages in urban areas but also for providing the theoretical supports of the urban network reconstruction. As a future works, it is recommended to decide optimized pipe diameters for efficient urban inundation simulations.

  • PDF

An Analysis on the Long-Term Runoff of the Yong San River (영산강의 장기유출량에 관한 고찰)

  • 한상욱;정종수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.3
    • /
    • pp.4184-4194
    • /
    • 1976
  • Located in the southwestern part of Korea, the Yong San Gang river flows generally northeast to southwest, and because of the specific location, topography and climate, the basin area is subject to recurrent drought and flood damages. To eliminate the cause of such damages and ensure an increase in the farm income by means of effective irrigation supply and increased cropping intensity, efforts are being made to speed up implementation of an integrated agricultural development project which would include construction. of an estuary dam and irrigation facilities as well as land development and tidal reclarnation. In formulating a basin development project plan, it is necessary to study a series of long-term runoff data. The catchment area at the proposed estuary damsite is 3,471$\textrm{km}^2$ with the total length of the river channel up to this point reaching 138km. An analysis of runoff in this area was carried out. Rainfall was estimated by the Thiessen Network based on records available from 15 of the rainfall observation stations within the area. Out of the 15 stations, Kwang Ju and Mok Po stations were keeping long-term precipitation records exceeding some 60 years while the others were in possession of only 5-10 years records. The long-term records kept by those stations located in the center of the basin were used as base records and records kept by the remaining stations were supplemented using the coefficient of correlation between the records kept by the base stations and the remainder. The analyses indicate that the average annual rainfall measured at Kwang Ju during 1940-1972 (33 years) amounts to 1,262mm and the areal rainfall amounts to 1,236mm. For the purpose of runoff analysis, 7 observatories, were set up in the middle and lower reaches of the river and periodic measurements made by these stations permitted analysis of water levels and river flows. In particular, the long-term data available from Na Ju station significantly contributed to the analysis. The analysis, made by 4-stage Tank method, shows that the average annual runoff during 1940-1972 amounts to 2,189 million ㎥ at the runoff rate of 51%. As for the amount of monthly runoff, the maximum is 484.2 million ㎥ in July while the minimum is 48.3 million ㎥ in January.

  • PDF

Rainfall analysis considering watershed characteristics and temporal-spatial characteristics of heavy rainfall (집중호우의 시·공간적 특성과 유역특성을 고려한 강우분석 연구)

  • Kim, Min-Seok;Choi, Ji-Hyeok;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.739-745
    • /
    • 2018
  • Recently, the incidence of heavy rainfall is increasing. Therefore, a rainfall analysis should be performed considering increasing frequency. The current rainfall analysis for hydrologic design use the hourly rainfall data of ASOS with a density of 36 km on the Korean Peninsula. Therefore, medium and small scale watershed included Thiessen network at the same rainfall point are analyzed with the same design rainfall and time distribution. This causes problem that the watershed characteristics can not be considered. In addition, there is a problem that the temporal-spatial change of the heavy rainfall occurring in the range of 10~20 km can not be considered. In this study, Author estimated design rainfall considering heavy rainfall using minutely rainfall data of AWS, which are relatively dense than ASOS. Also, author analyzed the time distribution and runoff of each case to estimate the huff's method suitable for the watershed. The research result will contribute to the estimation of the design hydrologic data considering the heavy rainfall and watershed characteristics.

Groundwater Recharge Assessment via Grid-based Soil Moisture Route Modeling (격자기반의 토양수분 추적에 의한 지하수함양량 추정기법 개발)

  • Kim, Seong-Jun;Chae, Hyo-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.61-72
    • /
    • 2000
  • The purpose of this study is to improve the method of evaluating groundwater recharge by using grid-based soil moisture routing technique. A model which predicts temporal variation and spatial distribution of soil moisture on a daily time step was developed. The model uses ASCII-formatted map data supported by the irregular gridded map of the GRASS(Geographic Resources Analysis Support System)-GIS and can generate daily and monthly spatial distribution map of surface runoff, soil moisture content, evapotranspiration within the watershed. The model was applied to Ipyunggyo watershed($75.6\;\textrm{km}^2$) located in the upstream of Bocheongchun watershed. Seven maps; DEM(Digital Elevation Mode]), stream, flow path, soil, land use, Thiessen network and free groundwater level, were used for input data. Predicted streamflows resulting from two years (l995, 1996) daily data were compared with the observed values at the watershed outlet. The results of temporal variations and spatial distributions of soil moisture are presented by using GRASS GIS. As a final result, the monthly predicted groundwater recharge was presented.sented.

  • PDF

Water Resources Assessment of the North Han River Watershed Using the DPSIR Concept (DPSIR 개념을 이용한 북한강 유역의 수자원 평가)

  • Lee, Kil-Seong;Sung, Jin-Young;Chung, Eun-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.813-816
    • /
    • 2010
  • 최근 지속가능한 개발의 개념은 국제적으로 경제 개발과 환경 보전 사이에서 논쟁이 중심이 되고 있으며, 수자원 개발과 관리는 이들 논쟁에서 중요한 부분을 차지하고 있다. 이와 더불어 유역을 관리함에 있어 수자원을 이수, 치수 및 수질의 단일 문제로 인식하는 것이 아니라 통합적으로 인식하는 유역통합관리(Integrated Watershed Management, IWM)의 필요성이 대두되고 있다. 이에 본 연구는 유역통합관리에 앞서 유역의 상태 및 문제점을 파악하기 위한 방법으로 EEA (European Environment Agency)에서 개발한 추진력(Driving force)-압력(Pressure)-상태(State)-영향(Impact)-반응(Response) (DPSIR) 개념 이용하여 3개의 세부 지표인 이수지표, 치수지표, 수질지표로 구성된 하나의 통합 지수인 유역수자원평가지수를 개발하였다. 세부지표인 이수지표는 연속무강우일수, 인구밀도, 용수수요, 물재이용률 등 16개의 구성요소, 치수지표는 홍수범람위험 지역 내 거주 인구수, 홍수방어시설용량, 개수율, 100 mm 이상 강수일수 등 15개의 구성요소, 수질지표는 BOD (Biochemical Oxygen Demend) 부하량, 수질 등급, 연중 목표 수질 달성일수 등 13개의 구성요소로 이루어져있다. 이를 북한강 유역 중 북한 지역을 제외한 유역 즉, 수자원단위지도 상의 춘천댐권역(1010) ~ 청평댐권역(1015)의 6개 중권역에 적용하여 비교하였다. 세부지표의 주된 요소인 유출량의 모의를 위해 장기유출모형인 HSPF (Hydrological Simulation Program - Fortran)를 사용하였다. 모형에 입력된 유역평균강수량 자료는 1973년 ~ 2008년까지의 37년의 자료기간을 갖는 북한강유역의 5개 기상관측소 자료를 Thiessen network를 이용하여 산정하였다. 본 연구를 통해서 북한강 유역의 현재 수자원의 상태를 지수화하여 나타내고 그 결과를 비교해보았다. 이 결과는 유역 수자원의 파악하여 유역통합관리시 유역의 문제점을 파악하고 이를 수정하기 위한 의사결정 우선순위를 정하는데 사용될 수 있다.

  • PDF

Application of GSIS Technique for Direct Runoff Estimation (직접유출량 산정을 위한 GSIS 기법의 적용)

  • 신계종;김연준
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.199-209
    • /
    • 2000
  • Recently, GSIS is introduced in the various fields. Especially in hydrology, the useful of GSIS is emphasized to analyze parameters, which are necessary for the analysis of watershed. In this paper, to estimate the direct runoff volume, I used the SCS-CN method which was useful to calculate direct runoff volume in a watershed that was not observed. But because SCS-CN method must treat a great number of spatial data, if we use the GSIS, we can treat numbers of the data easily. GSIS databases is constructed by using the data which is related to soil type, landuse. And runoff curve number was estimated by means of these databases in the study area. Also, the area of covered each subbasin rainfall gauge station was estimated by thiessen polygon network technique. The direct runoff volume was calculated by these subbasin area to the rainfall gauge station. I knew, from this study, that using GSIS, I can calculate parameters needed in direct runoff volume analysis, fast, exactly.

  • PDF