DOI QR코드

DOI QR Code

Rainfall analysis considering watershed characteristics and temporal-spatial characteristics of heavy rainfall

집중호우의 시·공간적 특성과 유역특성을 고려한 강우분석 연구

  • Received : 2017.12.29
  • Accepted : 2018.07.16
  • Published : 2018.08.31

Abstract

Recently, the incidence of heavy rainfall is increasing. Therefore, a rainfall analysis should be performed considering increasing frequency. The current rainfall analysis for hydrologic design use the hourly rainfall data of ASOS with a density of 36 km on the Korean Peninsula. Therefore, medium and small scale watershed included Thiessen network at the same rainfall point are analyzed with the same design rainfall and time distribution. This causes problem that the watershed characteristics can not be considered. In addition, there is a problem that the temporal-spatial change of the heavy rainfall occurring in the range of 10~20 km can not be considered. In this study, Author estimated design rainfall considering heavy rainfall using minutely rainfall data of AWS, which are relatively dense than ASOS. Also, author analyzed the time distribution and runoff of each case to estimate the huff's method suitable for the watershed. The research result will contribute to the estimation of the design hydrologic data considering the heavy rainfall and watershed characteristics.

최근 집중호우의 발생빈도가 증가하고 있으며, 이를 고려한 강우분석을 실시하여야 한다. 현재 수문설계를 위한 강우분석은 한반도 조밀도 36 km인 기상청 관할 종관기상관측지점(Automated Surface Observing System, ASOS)의 시 단위 강우를 이용하고 있다. 이로 인해 같은 강우지점의 티센망에 포함되는 중소규모 유역은 동일한 확률강우량과 강우시간분포로 분석하게 됨으로 유역특성을 고려하지 못하는 문제가 발생한다. 또한, 10~20 km 범위 내에서 발생하는 집중호우의 시 공간적 변화를 고려하지 못하는 문제점이 발생한다. 따라서 본 연구에서는 종관기상관측지점에 비해 상대적으로 조밀도가 우수한 방재기상관측지점(Automatic Weather System, AWS)의 분 단위 강우자료를 이용하여 집중호우를 고려한 확률강우량을 산정하였다. 또한, 유역에 적합한 Huff의 4분위 방법 산정을 위해 Case별 시간분포 산정과 유출분석을 실시하였다. 이는 집중호우와 유역특성을 반영한 설계수문량 산정에 크게 기여할 것으로 판단된다.

Keywords

References

  1. Ahn, J, H., Kim, T, W., Yoo, C, S., Yoon, Y, N. (2000). "Analysis of the changes in rainfall quantile according to the increase of data period", Journal of Korea Water Resources Association, KWRA, Vol. 33, No. 5, pp. 569-580.
  2. Choi, S. Y., Joo, K. W., Shin, K. W., and Heo, J. H. (2014). "Improvement of Huff's method considering severe rainstorm events." Journal of Korea Water Resources Association, KWRA, Vol. 47, No. 11, pp. 985-996. https://doi.org/10.3741/JKWRA.2014.47.11.985
  3. Heo, J. H., Lee, Y. S., Shin, H. J., and Kim, K. D. (2007). "Application of regional rainfall frequency analysis in South Korea (I): rainfall quantile estimation." Journal of Korea Society of Civil Engineers, KSCE, Vol. 27, No. 2B, pp. 101-111.
  4. Huff, F. A. (1967). "Time distribution of rainfall in heavy storms." Water Resources Research, Vol. 3, No. 4, pp. 1007-1019. https://doi.org/10.1029/WR003i004p01007
  5. Jang, S. H., Yoon, J. M., and Yoon, Y. L. (2006). "A study on the improvement of Huff's method for applying in Korea: II. Improvement of Huff's method." Journal of Korea Water Resources Association, KWRA, Vol. 39, No. 9, pp. 779-786. https://doi.org/10.3741/JKWRA.2006.39.9.779
  6. Jung, B. H., Son, H. M., and Oh, G. D. (2005). "Hydrologic analysis of composite planning of river." Journal of Korea Water Resources Association, KWRA, Vol. 38, No. 4, pp. 25-36. https://doi.org/10.3741/JKWRA.2005.38.1.025
  7. Kim, M. S., and Moon, Y. I. (2015). "A study on quality control method for minutely rainfall data." Journal of Korea Society of Civil Engineers, KSCE, Vol. 35, No. 2, pp. 319-326. https://doi.org/10.12652/Ksce.2015.35.2.0319
  8. Kim, M. S., Son, H. M., and Moon, Y. I. (2016). "A study on estimation of target precipitation in Seoul using AWS minutely rainfall data." Journal of Korea Water Resources Association, KWRA, Vol. 49, No. 1, pp. 11-18. https://doi.org/10.3741/JKWRA.2016.49.1.11
  9. KMA (Korea Meteorological Administration) (2009). Meterological Technology & Policy.
  10. Kwon, H. H., So, B. J., Kim, M. J., and Park, S. H. (2011). "Development of geometric moments based ellipsoid model for extracting spatio-temporal characteristics of rainfall field." Journal of Korea Society of Civil Engineers, KSCE, Vol. 31, No. 6B, pp. 531-539.
  11. MOLIT (Ministry of Land, Infrastructure and Transport) (2011). Improvement and supplement of probability rainfall.
  12. MOLIT (Ministry of Land, Infrastructure and Transport) (2012). Estimation method of design flood.
  13. MOLIT (Ministry of Land, Infrastructure and Transport) (2013). River master plan of Anyangcheon basin
  14. Moon, J. W., Choi, S. J., Kang, S. K., and Lee, J. J. (2012). "An evaluation of water supply reliability using AWS data in Korea." Journal of Korea Water Resources Association, KWRA, Vol. 45, No. 8, pp. 743-753. https://doi.org/10.3741/JKWRA.2012.45.8.743
  15. Oh, T, S., Kim, M, S., Moon, Y, L., Ahn, J, H. (2009). "An analysis of the characteristics in design rainfall according to the data periods", Journal of Korean Society of Hazard Mitigation, KOSHAM, Vol. 9, No. 4, pp. 115-127.
  16. Shin, I. C., Kim, T. R., Lee, E. J., Kim, E. H., Kim, E. S., Park, Y. O., Bae, S. H., and Yi, H. I. (2007). "Climatic characteristics of august and summer of 2007 and long term trend of august and summer climate." Atmosphere, KMS, Vol. 17, No. 4, pp. 471-481.
  17. Son, A. L., Bae, S. H., Han, K. Y., and Cho, W. H. (2013). "Prospect of design rainfall in urban area considering climate change." Journal of Korea Water Resources Association, KWRA, Vol. 46, No. 6, pp. 683-696. https://doi.org/10.3741/JKWRA.2013.46.6.683
  18. Yoon, S. K., Kim, J. S., and Moon, Y. I. (2012). "A study on optimal time distribution of extreme rainfall using minutely rainfall data: a case study of Seoul." Journal of Korea Water Resources Association, KWRA, Vol. 45, No. 3, pp. 275-290. https://doi.org/10.3741/JKWRA.2012.45.3.275