• Title/Summary/Keyword: Thickness Stain Distribution

Search Result 6, Processing Time 0.019 seconds

A Study on the Warm Deep Drawing Ability of Sheets on Cr-Coating Die (크롬 코팅 처리된 금형에서 박판의 온간 딥드로잉 성형성에 관한 연구)

  • 공경환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.63-70
    • /
    • 1999
  • Some deep drawing characteristics to the elevated temperatures were investigated for the SCP1 steel sheets by using the Cr-coated die. For this investigations six steps of temperature ranges from room temperature to 25$0^{\circ}C$ and six kinds of drawing ratio from 2.4 to 2.9 were adopted. As a result the limiting drawing ration maximum drawing force and the maximum drawing depth were sensitively affected by the elevated temperatures and the more stable thickness strain distribution was observed to the elevated temperatures, Some experimental results were compared with analytical results using the DYNA-3D code.

  • PDF

The Histological Observation of the Effects of Pulsed Ultrasound on Wound Healing of Rats (맥동성 초음파가 흰쥐 창상치유에 미치는 조직학적 변화)

  • Kim, Gye-Yeop;Kim, Tae-Youl;Na, Soo-Young;Kim, Kyung-Yoon;Kim, Gi-Do;Kim, Jong-Man
    • Physical Therapy Korea
    • /
    • v.12 no.1
    • /
    • pp.80-90
    • /
    • 2005
  • The purpose of this study was to evaluate the effects of pulsed ultrasound on wound healing and observe during the wound healing process the distribution of mast cells according to histopathologic findings. Eighty Sprague Dawley rats which were divided into 4 groups received full thickness skin wounds on the back. Each of the 5 animals was sacrificed immediately and then sacrificed again 1, 3, 6, and 12 days after injury. Specimens from the wounds were removed during healing and routinely processed with a hematoxylin-eosin stain and a toluidine blue stain. The authors then observed the distribution of mast cells under a light microscope. The results of this study were as follows: The rate of wound healing and the length of the wounds of the pulsed ultrasound group II was significantly faster than group I on day 6 and day 12 (p<.001). Group III showed the most significant effect after12 days (p<.001). Group IV also showed a significant effect at 12 days (p<.01). A low-intensity ultrasound .5 $W/cm^2$ resulted in a fast healing rate. During the wound healing process mast cells had a tendency to decrease in the acute inflammatory phase. During the wound healing process mast cells were thought to contribute to the healing of the wound.

  • PDF

Numerical Simulation of an Impinging Jet with Various Nozzle-to-strip Distances in the Air-knife System

  • So, Hong-Yun;Yoon, Hyun-Gi;Chung, Myung-Kyoon
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.239-246
    • /
    • 2010
  • When galvanized steel strip is produced through a continuous hot-dip galvanizing process, the thickness of the adhered zinc film is controlled by impinging a thin plane nitrogen gas jet. The thickness of the zinc film is generally affected by impinging pressure distribution, its gradient and shearing stress at the steel strip. These factors are influenced by static pressure of gas spraying at air knife nozzle, a nozzle-to-strip distance and strip and a geometric shape of the air knife, as well. At industries, galvanized steel strip is produced by changing static pressure of gas and a distance between the air knife nozzle and strip based on experimental values but remaining a geometric shape of nozzle. Splashing and check-mark strain can generally occur when a distance between the air knife nozzle and strip is too short, while ability of zinc removal can lower due to pressure loss of impinging jet when a distance between the air knife nozzle and strip is too long. In present study, buckling of the jet and change of static pressure are observed by analyzing flow characteristics of the impinging jet. The distance from the nozzle exit to the strip varies from 6 mm to 16 mm by an increment of 2 mm. Moreover, final coating thickness with change of a distance between the air knife nozzle and strip is compared with each case. An ability of zinc removal with the various distances is predicted by numerically calculating the final coating thickness.

Finite Element Analysis of the Piezoelectric Behavior of ZnO Nanowires (산화아연 나노와이어의 압전거동에 대한 분석)

  • Lee, Woong
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.671-679
    • /
    • 2018
  • Finite element analyses are carried out to understand the piezoelectric behaviors of ZnO nanowires. Three different types of ZnO nanowires, with aspect ratios of 1:2. 1:31, and 1:57, are analyzed for uniaxial compression, pure bending, and buckling. Under the uniaxial compression with a strain of $1.0{\times}10^{-4}$ as the reference state, it is predicted that all three types of nanowires develop the same magnitude of the piezoelectric fields, which suggests that longer nanowires exhibit higher piezoelectric potential. However, this prediction is not in agreement with the experimental results previously reported in the literature. Such discrepancy is understood when the piezoelectric behaviors under bending and buckling are considered. When only the strain field due to bending is present in bending or buckling, the antisymmetric nature of the through-thickness stain distribution indicates that two piezoelectric fields, the same in magnitude and opposite in sign, develop along the thickness direction, which cancels each other out, resulting in a zero net piezoelectric field. Once additional strain contribution due to axial deformation is superposed on the bending, such field cancelling is compensated for due to the axial component of the piezoelectric field. Such numerical predictions seem to explain the reported experimental results while providing a guideline for the design of nanowire-based piezoelectric devices.

Anti-proliferative Effect of Paclitaxel in Multicellular Layers of Human Cancer Cells (다층 배양된 암세포에서 파크리탁셀의 항증식효과 분석)

  • Kang, Choon-Mo;Lee, Joo-Ho;Cha, Jung-Ho;Kuh, Hyo-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Human solid tumors exhibit a multicellular resistance (MCR) resulting from limited drug penetration and decreased sensitivity of tumor cells when interacting with their microenvironments. Multicellular cultures represent solid tumor condition in vivo and provide clinically relevant data. There is little data on antitumor effect of paclitaxel (PTX) in multicellular cultures although its MCR has been demonstrated. In the present study, we evaluated antiproliferative effects of PTX in multicellular layers (MCL) of DLD-1 human colorectal carcinoma cells. BrdU labeling index (LI), thickness of MCL, cell cycle distribution and cellular uptake of calcein were measured before and after exposure to PTX at 0.1 to 50 ${\mu}M$ for 24, 48 and 72 hrs. BrdU LI and thickness of MCL showed a concentration- and time-dependent decrease and the changes in both parameters were similar, i.e., 34.2% and 40.6% decrease in BrdU LI and thickness, respectively, when exposed to $50\;{\mu}M$ for 72 hr. The DLD-1 cells grown in MCL showed increase in $%G_{0}/G_{1}$ and resistance to cell cycle arrest and apoptosis compared to monolayers. Calcein uptake in MCL did not change upon PTX exposure, indicating technical problems in multicellular system. Overall, these data indicate that antitumor activity of PTX may be limited in human solid tumors (a multicellular system) and MCL may be an appropriate model to study further pharmacodynamics of PTX.

Tributyltin Chloride (TBTCl) Toxicity on the Growth and Mantle Structure of the Equilateral Venus, Gomphina veneriformis (Bivalvia: Veneridae) (대복, Gomphina veneriformis의 성장과 외투막 구조에 미치는 TBTCl의 독성)

  • Park, Jung-Jun;Lee, Jung-Sick
    • The Korean Journal of Malacology
    • /
    • v.24 no.3
    • /
    • pp.229-241
    • /
    • 2008
  • Changes of growth and histopathological feature in the mantle structure of the equilateral venus, Gomphina veneriformis exposed to tribultyltin chloride (TBTCl) for 36 weeks were observed. Concentrations of TBTCl were 0, 0.4, 0.6, and $0.8{\mu}g/L$. A regression analysis by power function of SPSS was shown that the growth of experimental groups was significantly decreased after 12 weeks of exposure. For histological analysis, mantle tissues were characterized using H-E stain, AB-PAS (pH 2.5) reaction and Masson's trichrome stain, and epidermal layer thickness and mucous cell distribution were analysed using the image analyser. The mantle had 4-folds (inner-inner, inner-outer, middle, and outer) and its epidermal layer consisted of simple epithlia. A periostracum was observed in the periostracal groove between middle and outer fold. Inner epidermal layer consisted of simple ciliated columnar epithelia, but the outer epidermal layer consisted of simple non-ciliated columnar epithelia. Alcian blue positive mucous cells showed blue color (7462c, 653c) in the inner fold, violet color (2583c) in the middle fold, and blue color (647c, 7455c) in inner epidermal layer (numbers in the parenthesis are codes of Pantone process coated color). Hemolymph sinus in the mantle was extended, and mucous cells in inner plica of the middle fold were stained as blue (7455c) and violet (2587c), after 12 weeks of TBTCI exposure. Cilia and striated border were disappeared, and number of mucous cells in the inner epidermal layer was reduced. Serious histopathological changes in middle and outer fold near the periostracum were observed after 36 weeks. Moreover, epidermal layer thickness and mucous cell distribution were showed decreasing tendency as exposure time to TBTCI was increased. Results of this study suggested that TBTCl induced growth disorder with histopathological changes.

  • PDF