• Title/Summary/Keyword: Thick film process

Search Result 375, Processing Time 0.022 seconds

Fabrication of Solid State Electrolyte Li7La3Zr2O12 thick Film by Tape Casting (테잎캐스팅을 이용한 전고체전해질 Li7La3Zr2O12 후막 제조)

  • Shin, Ran-Hee;Son, Samick;Ryu, Sung-Soo;Kim, Hyung-Tae;Han, Yoon-Soo
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.379-383
    • /
    • 2016
  • A thick film of $Li_7La_3Zr_2O_{12}$ (LLZO) solid-state electrolyte is fabricated using the tape casting process and is compared to a bulk specimen in terms of the density, microstructure, and ion conductivity. The final thickness of LLZO film after sintering is $240{\mu}m$ which is stacked up with four sheets of LLZO green films including polymeric binders. The relative density of the LLZO film is 83%, which is almost the same as that of the bulk specimen. The ion conductivity of a LLZO thick film is $2.81{\times}10^{-4}S/cm$, which is also similar to that of the bulk specimen, $2.54{\times}10^{-4}S/cm$. However, the microstructure shows a large difference in the grain size between the thick film and the bulk specimen. Although the grain boundary area is different between the thick film and the bulk specimen, the fact that both the ion conductivities are very similar means that no secondary phase exists at the grain boundary, which is thought to originate from nonstoichiometry or contamination.

The study on characterization of current limit and fabrication of device for current limit formed by thick film (후막형 전류제한소자제작과 전류제한특성 연구)

  • Lim, Sung-Hun;Kang, Hyeong-Gon;Choi, Myung-Ho;Han, Byung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1704-1706
    • /
    • 1999
  • $YBa_2Cu_3O_x$ superconducting thick film was fabricated by surface diffusion process of $Y_2BaCUO_5$ and the mixed compound of $(3BaCuO_2+2CuO)$ expected to be liquid phase above the peritectic temperature of YBa2Cu30x. For the surface diffusion. 3BaCu02+2CuO mixed with binder material was patterned on $Y_2BaCuO_5$ substrate by the screen printing method. The characteristic of current limit on thick film fabricated was measured. The thick film limited the current from $2.8213mA_{rms}$ to $4.2034mA_{rms}$ with $500{\Omega}$ load resistance, and from $4.1831mA{rms}$ to $4.2150mA_{rms}$ with $10{\Omega}$ load resistance.

  • PDF

A New process for the Solid phase Crystallization of a-Si by the thin film heaters (박막히터를 사용한 비정질 실리콘의 고상결정화)

  • 김병동;정인영;송남규;주승기
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.3
    • /
    • pp.168-173
    • /
    • 2003
  • Recently, according to the rapid progress in Flat-panel-display industry, there has been a growing interest in the poly-Si process. Compared with a-Si, poly-Si offers significantly high carrier mobility, so it has many advantages to high response rate in Thin Film Transistors (TFT's). We have investigated a new process for the high temperature Solid Phase Crystallization (SPC) of a-Si films without any damages on glass substrates using thin film heater. because the thin film heater annealing method is a very rapid thermal process, it has very low thermal budget compared to the conventional furnace annealing. therefore it has some characteristics such as selective area crystallization, high temperature annealing using glass substrates. A 500 $\AA$-thick a-Si film was crystallized by the heat transferred from the resistively heated thin film heaters through $SiO_2$ intermediate layer. a 1000 $\AA$-thick $TiSi_2$ thin film confined to have 15 $\textrm{mm}^{-1}$ length and various line width from 200 to 400 $\mu\textrm{m}$ was used as the thin film heater. By this method, we successfully crystallized 500 $\AA$-thick a-Si thin films at a high temperature estimated above $850^{\circ}C$ in a few seconds without any thermal deformation of g1ass substrates. These surprising results were due to the very small thermal budget of the thin film heaters and rapid thermal behavior such as fast heating and cooling. Moreover, we investigated the time dependency of the SPC of a-Si films by observing the crystallization phenomena at every 20 seconds during annealing process. We suggests the individual managements of nucleation and grain growth steps of poly-Si in SPC of a-Si with the precise control of annealing temperature. In conclusion, we show the SPC of a-Si by the thin film heaters and many advantages of the thin film heater annealing over other processes

Photo-imageable Thick-Film Lithography Technology for Embedded Passives Fabrication (내장형 수동소자의 제조를 위한 포토 이미징 후막리소그라피 기술)

  • Lim, Jong-Woo;Kim, Hyo-Tea;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.303-303
    • /
    • 2007
  • Photo-imageable thick-film lithography technology was developed for the fabrication of embedded passives such as inductors and capacitors. In this study, photo-imageable dielectric and conductor pastes have apoted a negative type. Sodalime glass wafer, alumina substrate and zero-shrinkage LTCC green tapes were used as substrates. In result, The lithographic patterns were designed as lines and spaces for conductor material, or via-holes for ceramic, LTCC, materials. The scattering and reflection of UV-beam on the substrate had negative effects on fine patterning. The patterning performance was varied with the exposing and developing process conditions, and also varied with the substrate materials. Fine resolution of less then $50/50{\mu}m$ in line and space was obtained, which is difficult in screen printing method.

  • PDF

Study on variation of electrical properties of polymer thick film resistor regarding curing temperature, printing process and substrate (경화 온도와 인쇄 공정 및 기판에 따른 폴리머 후막 저항체의 특성 변화에 대한 연구)

  • Yoo, Myong-Jae;Lee, Sang-Myong;Park, Seong-Dae;Lee, Woo-Sung;Kang, Nam-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.311-312
    • /
    • 2005
  • Applying a designed test coupon pattern for fabricating resistors various resistors were formed using PTF(polymer thick film) pastes. Aspect ratio from 0.25 to 4 were selected for fabricating resistors. Formed resistors were cured at $170^{\circ}C$ and $240^{\circ}C$. Electrical properties of fabricated resistors were measured and their values analyzed in relation to cure temperature and formed geometry via printing. Also effects of substrates used for fabricating resistors were observed.

  • PDF

The Study on Characterization of Current-limiting with Diffusion Thickness of High-Tc Superconductor Thick Film (고온초전도후막의 확산두께에 따른 전류제한 특성연구)

  • Im, Seong-Hun;Gang, Hyeong-Gon;Han, Tae-Hui;Mo, Chang-Ho;Im, Seok-Jin;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.4
    • /
    • pp.210-218
    • /
    • 2000
  • For the fabrication of $YBa_2Cu_3O_x$ thick film, a substrate of $Y_2BaCuO_5$ was fabricated by adding $CeO_2$ into $Y_2BaCuO_5$ and two types of doping materials added with binder material were prepared. Each doping material was patterned on $Y_2BaCuO_5$substrate by the screen printing method and then was annealed at the temperature with a few step. It could be observed by X-ray diffraction patterns and SEM photographs that through the diffusion process of the $Y_2BaCuO_5$ and each doping material, the $YBa_2Cu_3O_x$ phase was formed. And with n additive of $CeO_2$ the thickness of formed $YBa_2Cu_3O_x$decreased. From the experiment of current limiting on thick film, the sample with thiner thickness of $YBa_2Cu_3O_x$ showed the more effective characteristics of current limiting.

  • PDF

Surface and Dielectric Properties of Oriental Lacquer Films Modified by UV-Curable Silicone Acrylate

  • Hong, Jin-Who;Kim, Hyun-Kyoung
    • Macromolecular Research
    • /
    • v.14 no.6
    • /
    • pp.617-623
    • /
    • 2006
  • In order to achieve an oriental lacquer (OL) film with a thick consistency, UV-curable silicone acrylate (SA) was added to OL by a dual curing process. The addition of 5 wt% UV-curable SA to the OL fomulation enabled the preparation via a single drying step of a $77{\mu}m-thick$ film exhibiting excellent surface properties. FTIR-ATR was used to investigate the effect of UV-curable SA on the behavior of film formation during curing, and the relaxation behavior of the produced films was investigated by dielectric spectroscopy. Dielectric properties were measured in the frequency range $10^{-2}-10^5\;Hz$ at various temperatures between -100 and $200^{\circ}C$. The results demonstrated that OL modified by UV-curable SA has a higher glass transition temperature and stronger secondary relaxation at a lower temperature than the conventional OL system. The OL film modified with UV-curable SA was presumed to be harder at the surface and tougher than conventional OL film.

High $T_c$ Superconductor Applications and Thick Film Preparation

  • Soh, Dea-Wha;Zhanguo Fan
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.2
    • /
    • pp.63-66
    • /
    • 2003
  • High $T_c$ superconducting lines will be applied as key materials in the areas of power transmission line; magnetic levitation of vehicle; magnetic separation; magnetic energy storage and marine propulsion. A combination method of electrophoresis deposition and zone-melting for preparation of YBaCuO tape is proposed. The submicron particle powder of YBaCuO made by sol-gel method is used in the electrophoresis process. A 40∼50 ${\mu}\textrm{m}$ thickness of YBaCuO film on Ag plate could be deposited in about three minutes. After deposition the film is rolled and heat treated in order to increase the density and the adhesion of the film to the Ag plate. Silver(Ag) and lead oxide(PbO) were added in the YBaCuO powder in order to reduce its melting point. The YBaCuO coating with controlled Ag and PbO contents was preliminarily zone-melted at about $945^{\circ}C$.

Electric Properties of Superconducting Ceramic Thick Films (초전도 세라믹 후막의 전기적 특성)

  • Lee, Sang-Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.464-467
    • /
    • 2005
  • BiSrCaCuO superconducting ceramic thick films were fabricated by chemical process. The x ray diffraction pattern of the BiSrCaCuO thick films contained 110 K phase. The critical temperature of BiSrCaCuO thick films were Tc=95 K-97 K. The critical temperature and critical density of BiSrCaCuO thick film grown at $750 {\circ}C$ were Tc = 95 K and $Jc= 7{\times}10^{6} A/cm^{2}$ We obtained high-Jc as-grown BiSrCaCuO on an MgO substrate by low fressure CVD.

Optimization of Slurry Preparation Process for Soft Magnetic Green Sheet (연자성 복합체 후막용 슬러리 제조공정의 최적화)

  • Oh, Sea Moon;Lee, Chang Hyun;Shin, Hyo Soon;Yeo, Dong Hun;Kim, Jin Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.792-796
    • /
    • 2015
  • With high integration of electronic components, power inductors are also miniaturized. Recently, thick film processes for small size power inductors were developed and commercialized. However, the thick film process to prepare soft magnetic green sheets was not reported enough. In this study, we used Fe-Si magnetic and CIP (carbonyl iron powders) as starting materials to lead to a bimodal particle size distribution in the sheet. We proposed a newly developed 'Modified slurry preparation process' to get well dispersed condition even at high solid contents. Using the new process, it was possible to prepare a well dispersed slurry over 70 vol% of solid. BYK-103 was better than BYK-111 as dispersant in this slurry and the optimum amount was 0.6 wt%. The optimized slurry was formed into a sheet by tape casting process and then the sheet was laminated. We conformed that small size powder, large size powder, and epoxy resin were well dispersed in the green sheet.