• Title/Summary/Keyword: Thick electrode

Search Result 247, Processing Time 0.026 seconds

Improved Performance of Lithium-Ion Batteries using a Multilayer Cathode of LiFePO4 and LiNi0.8Co0.1Mn0.1O2

  • Hyunchul Kang;Youngjin Kim;Taeho Yoon;Junyoung Mun
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.320-325
    • /
    • 2023
  • In Li-ion batteries, a thick electrode is advantageous for lowering the inactive current collector portion and obtaining a high energy density. One of the critical failure mechanisms of thick electrodes is inhomogeneous lithiation and delithiation owing to the axial location of the electrode. In this study, it was confirmed that the top layer of the composite electrode contributes more to the charging step owing to the high ionic transport from the electrolyte. A high-loading multilayered electrode containing LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 (NCM811) was developed to overcome the inhomogeneous electrochemical reactions in the electrode. The electrode laminated with LFP on the top and NCM811 on the bottom showed superior cyclability compared to the electrode having the reverse stacking order or thoroughly mixed. This improvement is attributed to the structural and interfacial stability of LFP on top of the thick electrode in an electrochemically harsh environment.

Thick Film Type duster in Mg2SiO4/Glass composite ceramics for Anion Generation (Mg2SiO4/Glass Composite계 세라믹스를 이용한 음이온 발생용 후막형 클러스터)

  • Yeo, Dong-Hun;Shin, Hyo-Soon;Hong, Youn-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.118-123
    • /
    • 2010
  • The eco-friendly technologies have been extended as matter of international concern due to various diseases and syndromes according to an environmental pollution. In this study, we have manufactured a ceramic cluster with thick film type for anion generation equipment which is maximized anion but minimized ozone contents generated. To develop the formulation of ceramic cluster, we conducted the $Mg_2SiO_4$ powders doped with 10 vol% glass frits as Na-Zn-B-O system and sintered at $1050^{\circ}C$ for 2 hours in air for starting materials and investigated the matching properties between the Ag-Pd electrode and the starting materials. The sintered sample for the composition of cluster has 6.7 of dielectric constant and 32 kV/mm of withstand voltage. The yield of anions was measured according to an electrode pattering, discharge gap between electrode, and thickness of electrode protective layer in the cluster of thick film type. We have manufactured the ceramic clusters with optimized thick film structure that have an anion over a hundred particles and the ozone of 0.6 ppb generated.

Effects of Thick Bottom Electrode on ZnO-based FBAR Devices

  • Lee, Jae-Young;Mai, Linh;Pham, Van Su;Kabir, S. M. Humayun;Yoon, Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.211-214
    • /
    • 2007
  • In this paper, the resonance characteristics of ZnO-based film bulk acoustic resonator (FBAR) devices with thick bottom electrode are investigated. The ultra-thin Cr film (300 ${\AA}-thick$) between $SiO_2$ film and W film is formed by a sputtering-deposition in order to enhance the adherence at their interfaces. The resonance frequency of three different resonator devices was observed to be ${\sim}2.7$ GHz, and the resonance characteristics $(S_{11})$ of the FBAR devices were found to have a strong dependence on the thickness of bottom electrode.

  • PDF

Fabrication and Characterization of Multi-Channel Electrode Array (MEA) (다중 채널 전극의 제작 및 특성 평가)

  • Seong, Rak-Seon;Gwon, Gwang-Min;Park, Jeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.9
    • /
    • pp.423-430
    • /
    • 2002
  • The fabrication and experimentation of multi-channel electrodes which enable detecting and recording of multi-site neuronal signals have been investigated. A multi-channel electrode array was fabricated by depositing 2000${\AA}$ thick Au layer on the 1000${\AA}$ thick Ti adhesion layer on a glass wafer. The metal paths were patterned by wet etching and passivated by depositing a PECVD silicon nitride insulation layer to prevent signals from intermixing or cross-talking. After placing a thin slice of rat cerebellar granule cell in the culture ring located in central portion of the multi-channel electrode plate, a neuronal signal from an electrode which is in contact with the cerebellar granule cell has been detected. It was found that the electrode impedance ranges 200㏀∼1㏁ and the impedance is not changed by cleaning with nitric acid. Also, the impedance is inversely proportion to the exposed electrode area and the cross-talk is negligible when the electrode spacing is bigger than 600$\mu\textrm{m}$. The amplitude and frequency of the measured action potential were 38㎷ and 2㎑, which are typical values. From the experimental results, the fabricated multi-channel electrode array proved to be suitable for multi-site neuronal signal detection for the analysis of a complicated cell network.

A Study on Structural and Electrical Properties of ZnO Thick Films on the Glass Substrate and PET Film (Glass Substrate와 PET Film위에 Screen Printing된 ZnO Thick Film의 구조적 전기적 특성)

  • Lee, Ku-Tak;Jeon, Min-Cheol;Chae, Moon-Soon;Lee, Kyung-Ju;Moon, Byung-Moo;Koh, Jung-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.355-358
    • /
    • 2011
  • As a II-IV compound semiconductor, ZnO has a wide band gap of 3.37 eV with transparent properties. Due to this transparent properties, ZnO materials can be also employed as the transparent conducting electrode materials. Recently, rapid progress has been made in the field of DSSC (dye sensitized solar cell)area. Therefore, strong demands have been required for the transparent electrodes with low temperature processing and cheap cost. In this paper, we will prepare ZnO thick films on the PET substrates for the electrode applications. We will investigate the structural and microstructure properties through the XRD, and SEM analysis, respectively. Also, we will study the electrical of specimens to apply the conducting electrode.

Preparation of Lead-free Silver Paste with Nanoparticles for Electrode (나노입자를 첨가한 전극용 무연 silver 페이스트의 제조)

  • Park, Sung Hyun;Park, Keun Ju;Jang, Woo Yang;Lee, Jong Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.4
    • /
    • pp.219-224
    • /
    • 2006
  • Silver paste with low sintered temperature has been developed in order to apply electronic parts, such as bus electrode, address electrode in PDP (Plasma Display Panel) with large screen area. In this study, nano-sized silver particles with 10-30 nm were synthesized from silver nitrate ($AgNO_3$) solution by chemical reduction method and silver paste with low sintered temperature was prepared by mixing silver nanoparticles, conventional silver powder with the particle size 1.6 um and Pb-free frit. Conductive thick film from silver paste was fabricated by screen printing on alumina substrate. After firing at $540^{\circ}C$, the cross section and surface morphology of the thick films were analyzed by FE-SEM. Also, the sheet resistivity of the fired thick films was measured using the four-point technique.

PERFORMANCE OF MULTILAYER CERAMIC ACTUATOR BY CONSIDERING THE SHAPE EFFECT

  • Wee, S.B.;Jeong, S.J.;Song, J.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.594-597
    • /
    • 2003
  • In the present study, the piezoelectricity and polarization of multilayer ceramic actuator, being designed to stack PMN-PZ-PT ceramic layers and Ag-Pd electrode layers alternatively, were investigated under a consideration of geometric factor, the volume ratio of the ceramic to the electrode layers. The actuators were fabricated by tape casting of 0.2Pb(Mg1/3Nb2/3)O3-0.38PbZrO3-0.42PbTiO3 followed by lamination and burnout & co-firing processes. The actuators of 10 10 0.62 nm3 in size were formed in a way that 60 200 m thick ceramics were stacked alternatively with 5 m thick electrode layer. Increases in polarization and electric field-induced displacement with thickness of the ceramic layer were attributed to change of 90o/180o domain ratio, which was affected by interlayer internal stress. The piezoelectricity and actuation behaviors were found to depend upon the volume ratio (or thickness ratio) of ceramic to electrode layers.

  • PDF

Microwave Sintering of Silver Thick Film on Glass Substrate (유리기판 위에 Ag 후막의 마이크로웨이브 소결)

  • Hwang, Seong-Jin;Veronesi, Paolo;Leonelli, Cristina;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.22-22
    • /
    • 2009
  • The silver thick film has been used in many industries such as display, chip, solar cell, automobile, and decoration with conventional heating. The silver thick film is fired with optimal time and temperature. However, decreasing the fabrication time is required due to high production power. Furthermore, there is a problem that silver in electrode is diffused throughout any substrates. For inhibiting the Ag diffusion and long fabrication time we considered a microwave heating. We investigated firing of silver thick film with conventional and microwave heating. The temperature of substrate was measured by thermal paper and the temperature of substrate was under $100\;^{\circ}C$ The shrinkage of electrode was measured with optical microscopy and optical profilometry. The shrinkage of electrode heat treated with microwave for 5min was similar to the that fired by the conventional heating for several hours. After firing by two types of heating, the diffusion of silver was determined using a optical microscope. The microstructure of sintered silver thick film was observed by SEM. Based on our results, the microwave heating should be a candidate heating source for the fabrication electronic devices in terms of saving the tact time and preventing the contamination of substrate.

  • PDF

EPD Thick Film Formation of Ceramic Powder Materials (세라믹 분말재료의 EPD 후막형성 기술)

  • Soh, Dea-Wha;Jeon, Yong-Woo
    • Journal of the Speleological Society of Korea
    • /
    • no.75
    • /
    • pp.49-54
    • /
    • 2006
  • Electrophoretic Deposition (EPD) is the most convenient technology to deposit natural or oxide powders of nonconductive materials in alcoholic suspension solution with adding electrolyte of iodine to form ceramic thick film on metal substrate under applied electric field with double electric layer between electrode and metal substrate. In this research work, the important parameters and technical ways were studied to form EPD thick films of typical oxide ceramics of Al2O3, YBCO and tourmaline powders.

A study on the Structural Properties of PZT/BT thick film (PZT/BT 세라믹 후막의 구조적 특성에 관한 연구)

  • Lee, Sang-Heon;Lim, Sung-Soo;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.57-59
    • /
    • 2005
  • Ploycrystalline $Pb(Zr_{0.5},Ti_{0.5})O_3$ and $BaTiO_3$ powder were prepared by sol-gel process. The alumina substrate were sintered at $1400^{\circ}C$ with bottom electrode of Pt for 2 hours. The Pb(Zr0.5,Ti0.5)O3 / BaTiO3 multilayered thick films with laminating times were fabricated on alumina substrate by screening printing method. The obtained thick films were sintered at $800^{\circ}C$ with upper electrode of Ag paste for 1 hour. Structural properties of Pb(Zr0.5,Ti0.5)O3 / BaTiO3 multilayered thick films were investigated. As a result of the Differential Thermal Analysis(DTA) of Pb(Zr0.5,Ti0.5)O3, exothermic peak was observed at around $650^{\circ}C$. The X-ray diffraction (XRD) patterns indicated that BaTi03 and Pb(Zr0.5,Ti0.5)O3 phases and porosities were formed in the interface of Pb(Zr0.5,Ti0.5)O3 / BaTiO3 multilayered thick films.

  • PDF