• Title/Summary/Keyword: Thermogravimetric analysis (TGA)

Search Result 468, Processing Time 0.023 seconds

폴리프로필렌의 친수화 개질 -Polypropylene-poly(vinyl alcohol-co-ethylene) 블렌드의 특성-

  • 임상규;손태원
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1996.04a
    • /
    • pp.64-68
    • /
    • 1996
  • PP-EVOH(poly(vinyl alchol-co-ethylene)) blends were prepared by the mixing of polypropylene and poly(vinyl alcohol-co-ethylene) containing 38mol% of ethylene units (EVOH38) at melt state above PP melting temperature. The materials were characterized by using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and contact angle measurement to detemine the glass transition, meltin, decomposition temperatures, and wettability respectively. From the results, PP-EVOH(poly(vinyl alcohol-co-ethylene)) blends exgibits partial miscibility.

  • PDF

An Experimental Study on Measurement of the Reaction Order of a Liquid Fuel with Various Components (혼합 액체연료의 화학반응차수 계측에 관한 실험적 연구)

  • Choi, Hyo-Hyun;Lim, Jun-Seok;Kim, Chul-Jin;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.421-424
    • /
    • 2011
  • Thermal Analyses are conducted to measure various factors of a liquid fuel required for numerical analysis. Thermal Analyses are divided into two different methods of TGA (Thermo Gravimetric Analysis) and DSC (Differential Scanning Calorimetry). Non-isothermal experimental results are analyzed using by TGA. The results are filtered by a Freeman Carroll method. At the same time, chemical parameters of unknown liquid fuel, activation temperature and reaction order are measured to 6128.2 K and 1.4, respectively. Furthermore, the parameters can be obtained by various mathematical methods. It is found that tha parameters depend on the processing method.

  • PDF

Chemical synthesis of processable conducting polyaniline derivative with free amine functional groups

  • Kar, Pradip
    • Advances in materials Research
    • /
    • v.3 no.2
    • /
    • pp.117-128
    • /
    • 2014
  • Processable conducting polyaniline derivative with free amine functional groups was successfully synthesized from the monomer o-phenylenediamine in aqueous hydrochloric acid medium using ammonium persulfate as an oxidative initiator. The synthesized poly(o-phenylenediamine) (PoPD) in critical condition was found to be completely soluble in common organic solvents like dimethyl sulfoxide, N,N-dimethyl formamide etc. From the intrinsic viscosity measurement, the optimum condition for the polymerization was established. The polymer was characterized by ultraviolet visible spectroscopy, Fourier transform infrared spectroscopy, proton magnetic resonance spectroscopy ($^1HNMR$) and thermogravimetric (TGA) analyses. The weight average molecular weights of the synthesized polymers were determined by the dynamic light scattering (DLS) method. From the spectroscopic analysis the structure was found to resemble that of polyaniline derivative with free amine functional groups attached to ortho/meta position in the phenyl ring. However, very little ladder unit was also present with in the polymer chain. The moderate thermal stability of the synthesized polymer could be found from the TGA analysis. The average DC conductivity of $2.8{\times}10^{-4}S/cm$ was observed for the synthesized polymer pellet after doping with hydrochloric acid.

Study on the rheological properties of PP-SEBS/silicate composites (PP-SEBS/실리케이트 복합체의 유변학적 특성 연구)

  • Kim, Youn-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1988-1992
    • /
    • 2011
  • Polypropylene (PP)-SEBS/silicate composites with PP content of 35, 40, and 45wt% were fabricated by melt compounding at $200^{\circ}C$, using lab scale Brabender mixer. The content of silicate was fixed at 5wt%. The thermal properties of the PP-SEBS/silicate composites were investigated by differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). The melting temperature of PP-SEBS compound decreased up to $141^{\circ}C$ with SEBS content. TGA result indicates an increase in degradation temperature when the silicate was added in the PP-SEBS compound. The rheological properties of the compounds were measured by dynamic Rheometer. PP-SEBS/silicate composite indicates higher shear thinning and elastic property than PP-SEBS compound. Van Gurp-Palmen analysis was applied in order to certify an increase in elasticity.

The Combustion Characteristics of Residual Fuel oil Blended with Fuel Additives (잔사유용 연료첨가제 함유 선박 연료유의 연소특성 연구)

  • Jang, Se-Hyun;Lee, Kyoung-Woo;Kim, Jeong-Ryul;Kim, Jong-Ho;Yoon, Seok-Hun;Cho, Ik-Soon;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.554-563
    • /
    • 2016
  • Ships are capable of operating on residual fuel oil. Recently, various attempts have been made to meet environmental regulations and with ships operating on residual fuel oil. One way of fulfilling these requirements is by using fuel additives. Dispersants and fuel combustion improvers will have a positive effect on improving the combustion characteristics of the residual fuel oil. As such, this study examines fuel oils blended with additives by using fuel combustion analysis (FIA/FCA) and thermogravimetric analysis (TGA). The results of FIA/FCA focuse only on the amount of work done by the fuel oil. Therefore, it is recommended in this study that a new method to evaluate the combustion efficiency via FIA/FCA processes be developed. The analysis with ROHR curve gained by FIA/FCA brought similar results with pressure trace curve therefore it can be said that new analysis method can be reliable. The TGA, analysis process is very sensitive to the evaporation of fuel, for example, which could be addressed. In the performance-related findings of this study, blended samples with additives containing iron compounds showed a greater improvement in early combustion characteristics than samples without additives.

Characterization and Formation of Chemical Bonds of Silica-Coupling Agent-Rubber (실리카-커플링제-고무의 화학 결합 형성과 특성 분석)

  • Ko, Eunah;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.239-244
    • /
    • 2014
  • Reaction between silica and silane coupling agent without solvent was investigated using transmission mode Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Bis[3-(triethoxysilylpropyl) tetrasulfide] (TESPT) was used as a silane coupling agent. After removing the unreacted TESPT, formation of chemical bonds was analyzed using FTIR and content of reacted TESPT was determined using TGA. Content of the coupling agent bonded to silica increased with increase in the coupling agent content, but the oligomers were formed by condensation reaction between coupling agents when the coupling agent was used to excess. In order to identify bonds formed among silica, coupling agent, and rubber, a silica-coupling agent-BR model composite was prepared by reaction of the modified silica with liquid BR of low molecular weight and chemical bond formation of silica-coupling agent-BR was investigated. Unreacted rubber was removed with solvent and analysis was performed using FTIR and TGA. BR was reacted with the coupling agent of the modified silica to form chemical bonds. Polarity of silica surface was strikingly reduced and particle size of silica was increased by chemical bond formation of silica-coupling agent-BR.

A Study on Life Time Prediction of ACM Rubber Composite Using Accelerated Test and Thermogravimetric Analysis (노화촉진시험법 및 TGA를 이용한 ACM 고무복합재료의 수명 예측 연구)

  • Ahn, WonSool;Lee, Joon-Man;Lee, Hyung Seok
    • Elastomers and Composites
    • /
    • v.49 no.2
    • /
    • pp.144-148
    • /
    • 2014
  • Compression set (CS) and weight loss by thermal degradation of the ACM rubber composite sample prepared for an automotive part were measured simultaneously at several given temperatures of $150^{\circ}C$, $160^{\circ}C$, $170^{\circ}C$, and $180^{\circ}C$. Using the relationship between them, thermal life of the sample could be predicted at a given operating temperature by applying Toops method which is based on the analysis of non-isothermal TGA thermograms. Conversion by weight loss showed a linear relationship with CS changes, exhibiting 4.2% at CS 40%. Activation energy of thermal degradation was calculated as 120.2 kJ/mol at 4.2% of weight loss from Flynn-Wall-Ozawa analysis. When the expected life was set as time to reach CS 40% at $120^{\circ}C$, the life time of the sample was calculated as 9,700 hrs when Toops method was applied.

Influence of Activation Temperature on Micro- and Mesoporosity of Synthetic Activated Carbons

  • Park, Soo-Jin;Jung, Woo-Young
    • Carbon letters
    • /
    • v.2 no.2
    • /
    • pp.105-108
    • /
    • 2001
  • In this work, the activated carbons (ACs) with high micropores were synthesized from the polystyrene (PS) with KOH as activating agent. And the influence of activation temperature on porosity of the ACs studied was investigated. The porous structures of ACs were characterized by nitrogen adsorption at 77K using BET and D-R equations, and MP and BJH methods. The weight loss behaviors of the samples impregnated with KOH were also monitored using thermogravimetric analyzer (TGA). As a result, it was found that the samples could be successfully converted into ACs with well-developed micropores. From the results of pore size analysis, it was confirmed that elevated activation temperature does lead to the formation and deepening of microstructures without significant change in mesostructures. A thermogravimetric study showed that KOH could suppress the thermal decomposition of the sample, resulting in the increase of carbon yields.

  • PDF

Characteristics of Pore Development for Activated Carbon Fiber from Poly Acrylo-nitrile (1)-Stabilization and Carbonization- (PAN 계 활성탄소 섬유의 세공발달 특성 (1)-안정화(安定化) 및 탄화(炭化)-)

  • Park, Jong-Hak;Cho, Byung-Rin
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.147-154
    • /
    • 1991
  • Thermogravimetric measurements have been carried out to investigate the stabilization and carbonization of copolymer of acrylonitrile(95 wt %) and methyl acrylate(5 wt %) at various heating rates. The cyclization and dehydrogenation during the stabilization were important factors to determine pore development in the carbonization process. The pore and the specific surface area during the carbonization began to develope at the temperature higher than $400^{\circ}C$.

  • PDF

Characterization of Colorless and Transparent Polyimide Films Synthesized with Various Amine Monomers (다양한 아민 단량체로 합성한 무색투명 폴리이미드 필름 특성)

  • Choi, Il-Hwan;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.480-484
    • /
    • 2010
  • A series of poly(amic acid)s(PAAs) was prepared by reacting 4,4'-(4,4'-isopropylidenediphenoxy) bis(phthalic anhydride)(BPADA) as the anhydride monomer and 2,2'-bis(trifluoromethyl) benzidine (TFB), bis(3-aminophenyl)sulfone (APS), 4,4'-methylenebis-(2-methylcyclohexylamine) (MMCA), or bis[4-(3-aminophenoxy) phenyl] sulfone (BAPS) as the amine monomer with 5 mol% melamine in N,N-dimethylacetamide (DMAc). Colorless and transparent polyimide (PI) films were obtained by casting the PAAs at various heat treatment temperatures. The thermo-mechanical properties and optical transparency of the PI films were investigated. The thermal properties of the PI films were examined using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and thermomechanical analysis (TMA), and their optical transparency were measured by spectrophotometry. The coefficient of thermal expansion (CTE) and yellow index (YI) values of all samples were in the range of $48.53-64.24ppm/^{\circ}C$ and < 3.0, respectively.