• Title/Summary/Keyword: Thermoelectric effects

Search Result 95, Processing Time 0.022 seconds

Thermoelectric Properties of Co1-xNixSb3 Prepared by Encapsulated Induction Melting (밀폐유도용해로 제조한 Co1-xNixSb3의 열전특성)

  • Kim, Mi-Jung;Choi, Hyun-Mo;Ur, Soon-Chul;Kim, Il-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.6
    • /
    • pp.377-381
    • /
    • 2006
  • Skutterudite $CoSb_3$ doped with nickel was prepared by encapsulated induction melting, and its doping effects on thermoelectric properties were investigated. Single phase ${\delta}-CoSb_3$ was successfully obtained by encapsulated induction melting and subsequent heat treatment at 773 K for 24 h. Nickel atoms acted as electron donors by substituting cobalt atoms. Thermoelectric properties were remarkably improved by appropriate heat treatment and doping, and they were closely related to phase transitions and dopant activation. The maximum ZT(dimensionless figure of merit) was achieved as 0.2 at 600 K for the $Co_{0.93}Ni_{0.07}Sb_3$ specimen.

Thermoelectric properties of La(1-x)MxCoO3(M=Sr, Ca;x=0, 0.1) ceramics for thermal sensors

  • Kang, Min-Gyu;Cho, Kwang-Hwan;Kang, Chong-Yun;Kim, Jin-Sang;Kim, Sang-Sig;Yoon, Seok-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.234-238
    • /
    • 2009
  • We have investigated the effects of dopant on the thermoelectric properties that $La_{(1-x)}M_xCoO_3$(M=Sr, Ca;x=0, 0.1) bulk ceramics fabricated by the conventional solid state reaction method. The Seebeck coefficient of $La_{(1-x)}M_xCoO_3$(M=Sr, Ca;x=0, 0.1) bulk ceramics was measured at wide temperature range from 300 K to 673 K. The thermoelectric properties(Seebeck coefficient and electrical resistivity) depend strongly on the kinds of dopants. Sr and Ca dopant decrease the Seebeck coefficient. Density of sintered $La_{0.9}Sr_{0.1}CoO_3$ ceramic at 1523 K was 7.12 $g/cm^2$ and Seebeck coefficient was 35 ${\mu}V/K$ at 663 K. However, the electrical resistivity of the Sr doped sample was low and stable.

Thermoelectric Properties of $Sn_zCo_{3.7}Ni_{0.3}Sb_{12}$ ($Sn_zCo_{3.7}Ni_{0.3}Sb_{12}$의 열전특성)

  • Jung, Jae-Yong;Kwon, Young-Song;Lee, Jung-Il;Ur, Soon-Chul;Kim, Il-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.83-84
    • /
    • 2007
  • Sn-filled and Ni-doped $CoSb_3$ skutterudites were prepared by encapsulated induction melting, and their filling and doping effects on thermoelectric properties were investigated. Single phase ${\delta}-CoSb_3$ was successfully obtained by encapsulated induction melting and subsequent heat treatment at 823K for 5 days. Nickel atoms acted as electron donors by substituting cobalt atoms. Thermoelectric properties were remarkably improved by Sn filling and Ni doping.

  • PDF

Pellet Geometric Effects on a Thermoelectric Generator with a High Power Electronic Component (고파워 전자소자에 부착된 열전생성기에 대한 pellet의 기학학적 구조가 미치는 영향)

  • Kim, K.J.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.36-42
    • /
    • 2012
  • 본 논문은 고파워 전자소자로부터 에너지를 수확하는 열전생성기의 성능에 pellet의 기학학적 구조가 미치는 영향들을 보고한다. 열경계저항을 포함하는 열전모델을 적용하여, 다양한 경계조건들과 열원의 열율들에 대해 pellet의 높이, pellet의 단면적, thermocouple의 수를 최적화 하고, 이처럼 최적화된 pellet의 기하학적 구조를 갖는 열전생성기의 성능과 일반적인 pellet으로 구성된 열전생성기의 전력생성성능과 효율이 예측되고 비교되어진다. 예측된 결과는 최적화된 pellet으로 구성된 열전생성기가 일반적인 pellet으로 구성된 열전생성기보다 2-10배까지 생성효율이 우수함을 보여준다. 최적화된 pellet으로 구성된 열전생성기와 일반적인 pellet으로 구성된 열전생성기의 열적성능도 예측되고 비교된다.

An accurate analytical exploration for dynamic response of thermo-electric CNTRC beams under driving harmonic and constant loads resting on Pasternak foundation

  • Mohammadreza Eghbali;Seyed Amirhosein Hosseini
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.549-564
    • /
    • 2024
  • This paper aims to analyze the dynamic response of thermoelectric carbon nanotube-reinforced composite (CNTRC) beams under moving harmonic load resting on Pasternak elastic foundation. The governing equations of thermoelectric CNTRC beam are obtained based on the Karama shear deformation beam theory. The beams are resting on the Pasternak foundation. Previous articles have not performed the moving load mode with the analytical method. The exact solution for the transverse and axial dynamic response is presented using the Laplace transform. A comparison of previous studies has been published, where a good agreement is observed. Finally, some examples were used to analyze, such as excitation frequency, voltage, temperature, spring constant factors, the volume fraction of Carbon nanotubes (CNTs), the velocity of a moving harmonic load, and their influence on axial and transverse dynamic and maximum deflections. The advantages of the proposed method compared to other numerical methods are zero reduction of the error percentage that exists in numerical methods.

The Effects of Al-substitution on Thermoelectric and Charge Transport Properties of BiCuOSe Compounds (Al 치환이 BiCuOSe의 열전 특성에 미치는 영향)

  • An, Tae-Ho;Lim, Young Soo;Seo, Won-Seon;Park, Cheol-Hee;Park, Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.847-851
    • /
    • 2015
  • The effects of Al-substitution on thermoelectric and charge transport properties of BiCuOSe compounds were investigated. The compounds were prepared by a solid-state reaction and consolidated by SPS (spark plasma sintering). In spite of the increase in the hole concentration with increasing Al amounts in BiCuOSe compound, the electrical conductivity at room temperature was kept constant due to the reduction of mobility. However, electrical conductivities of Al-substituted BiCuOSe compounds at elevated temperature (> 600 K) were higher than those of BiCuOSe, and this result was discussed in terms of it's the band gap energy. The Seebeck coefficient was drastically reduced when Al was substituted in Bi site, which indicated that the electronic structure was influenced by the Al-substitution into Bi-site.

Thermoelectric Seebeck and Peltier effects of single walled carbon nanotube quantum dot nanodevice

  • El-Demsisy, H.A.;Asham, M.D.;Louis, D.S.;Phillips, A.H.
    • Carbon letters
    • /
    • v.21
    • /
    • pp.8-15
    • /
    • 2017
  • The thermoelectric Seebeck and Peltier effects of a single walled carbon nanotube (SWCNT) quantum dot nanodevice are investigated, taking into consideration a certain value of applied tensile strain and induced ac-field with frequency in the terahertz (THz) range. This device is modeled as a SWCNT quantum dot connected to metallic leads. These two metallic leads operate as a source and a drain. In this three-terminal device, the conducting substance is the gate electrode. Another metallic gate is used to govern the electrostatics and the switching of the carbon nanotube channel. The substances at the carbon nanotube quantum dot/metal contact are controlled by the back gate. Results show that both the Seebeck and Peltier coefficients have random oscillation as a function of gate voltage in the Coulomb blockade regime for all types of SWCNT quantum dots. Also, the values of both the Seebeck and Peltier coefficients are enhanced, mainly due to the induced tensile strain. Results show that the three types of SWCNT quantum dot are good thermoelectric nanodevices for energy harvesting (Seebeck effect) and good coolers for nanoelectronic devices (Peltier effect).

Thickness and Annealing Effects on the Thermoelectric Properties of N-type $Bi_2Te_{2.4}Se_{0.6}$ Thin Films (N형 $Bi_2Te_{2.4}Se_{0.6}$ 박막의 열전 특성에 미치는 두께 및 열처리 효과)

  • Kim Il-Ho;Jang Kyung-Wook
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.153-158
    • /
    • 2005
  • The effective mean free path model was adopted to examine the thickness effect on the thermoelectric properties of flash-evaporated n-type $Bi_2Te_{2.4}Se_{0.6}$ thin films. Annealing effects on the electron concentration and mobility were also studied, and their variations were analyzed in conjunction with antisite defects. Seebeck coefficient and electrical resistivity versus inverse thickness showed a linear relationship, and the mean free path was found to be $5120\AA$ Electron mobility was increased by annealing treatment and electron concentration was decreased considerably due to reduction of antisite defects, so that electrical conductivity was decreased and Seebeck coefficient was increased. When annealed at 473k for 1 hour, Seebeck coefficient and electrical conductivity were $-200\;\mu V/k\;and\;510\omega^{-1}cm^{-1}$, respectively. Therefore, the thermoelectric power factor was improved to be $20\times10^{-4}\;W/(mK^2)$.

The Analysis of the Effects of Design Parameters on the Energy Efficiency and Performance of TEM Dehumidifiers (열전모듈 제습기의 에너지 효율과 성능에 미치는 설계 인자의 영향 분석)

  • Lee, Tae-Hee
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2020
  • To provide a design direction for high efficiency thermoelectric module(TEM) dehumidifiers, the effects of design factors of TEM dehumidifiers on dehumidification energy efficiency and performance were numerically investigated. The design factors considered in this study are the TEM capacity, the performance of heat exchangers on the heating and cooling surfaces of the TEM. The higher capacity of the TEM results the higher dehumidification energy efficiency and performance at some operating voltage. The enhanced performance of the heat exchanger on heating surface increased the dehumidification energy efficiency and performance at all the operating voltage. The enhanced performance of the heat exchanger on cooling surface decreased the dehumidification energy efficiency and performance at all operating voltage.