DOI QR코드

DOI QR Code

The Effects of Al-substitution on Thermoelectric and Charge Transport Properties of BiCuOSe Compounds

Al 치환이 BiCuOSe의 열전 특성에 미치는 영향

  • An, Tae-Ho (Department of Materials Science & Engineering, Seoul National University) ;
  • Lim, Young Soo (Department of Materials System Engineering, Pukyong National University) ;
  • Seo, Won-Seon (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Cheol-Hee (LG Chem/Research Park) ;
  • Park, Chan (Department of Materials Science & Engineering, Seoul National University)
  • 안태호 (서울대학교 재료공학과) ;
  • 임영수 (부경대학교 신소재시스템공학과) ;
  • 서원선 (한국세라믹기술원 에너지환경소재본부) ;
  • 박철희 ((주)LG화학/기술연구원 CRD연구소) ;
  • 박찬 (서울대학교 재료공학과)
  • Received : 2015.11.19
  • Accepted : 2015.11.24
  • Published : 2015.12.01

Abstract

The effects of Al-substitution on thermoelectric and charge transport properties of BiCuOSe compounds were investigated. The compounds were prepared by a solid-state reaction and consolidated by SPS (spark plasma sintering). In spite of the increase in the hole concentration with increasing Al amounts in BiCuOSe compound, the electrical conductivity at room temperature was kept constant due to the reduction of mobility. However, electrical conductivities of Al-substituted BiCuOSe compounds at elevated temperature (> 600 K) were higher than those of BiCuOSe, and this result was discussed in terms of it's the band gap energy. The Seebeck coefficient was drastically reduced when Al was substituted in Bi site, which indicated that the electronic structure was influenced by the Al-substitution into Bi-site.

Keywords

References

  1. D. M. Rowe, CRC Handbook of Thermoelectrics (CRC, Boca Raton, 1995). [DOI: http://dx.doi.org/10.1201/9781420049718]
  2. H. J. Goldsmid, Thermoelectric Refrigeration (Plenum, New York, 1964). [DOI: http://dx.doi.org/10.1007/978-1-4899-5723-8]
  3. T. M. Tritt, Semiconductors and Semimetals, Recent Trends in Thermoelectric Materials Research: Part One to Three (Academic, San Diego, 2001).
  4. Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, and Z. F. Ren, Nano Lett., 8, 2580 (2008). [DOI: http://dx.doi.org/10.1021/nl8009928]
  5. X. Yan, B. Poudel, Y. Ma, W. S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, and Z. F. Ren, Nano Lett., 10, 3373 (2010). [DOI: http://dx.doi.org/10.1021/nl101156v]
  6. J. P. Heremans, V. Jovovic1, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Science, 321, 554 (2008). [DOI: http://dx.doi.org/10.1126/science.1159725]
  7. K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, Nature, 489, 414 (2012) [DOI: http://dx.doi.org/10.1038/nature11439]
  8. X. Shi, H. Kong, C. P. Li, C. Uher, J. Yang, J. R. Salvador, H. Wang, L. Chen, and W. Zhang, Appl. Phys. Lett., 92, 182101 (2008). [DOI: http://dx.doi.org/10.1063/1.2920210]
  9. X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc., 133, 7837 (2011). [DOI: http://dx.doi.org/10.1021/ja111199y]
  10. H. Ohta, K. Sugiura, and K. Koumoto, Inorganic Chemistry, 47, 8429 (2008). [DOI: http://dx.doi.org/10.1021/ic800644x]
  11. Y. Wang, N. S. Rogado, R. J. Cava, and N. P. Ong, Nature, 423, 425 (2003). [DOI: http://dx.doi.org/10.1038/nature01639]
  12. S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys., 97, 034106 (2005). [DOI: http://dx.doi.org/10.1063/1.1847723]
  13. M. Palazzi, C. R. Acad. Sci. Paris, 292, 789 (1981).
  14. W. J. Zhu, Y. Z. Huang, C. Dong, and Z. X. Zhao, Mater. Res. Bull., 29, 143 (1994). [DOI: http://dx.doi.org/10.1016/0025-5408(94)90134-1]
  15. B. A. Popovkin, A. M. Kusainova, V. A. Dolgikh, and L. G. Aksel’rud, Russ. J. Inorg. Chem., 43, 1471 (1998).
  16. L. D. Zhao, J. He, D. Berardan, Y. Lin, J. F. Li, C. W. Nan, and N. Dragoe, Energy. Environ. Sci., 7, 2900 (2014). [DOI: http://dx.doi.org/10.1039/C4EE00997E]
  17. J. L. Lan, B. Zhan, Y. C. Liu, B. Zheng, Y. Liu, Y. H. Lin, and C. W. Nan, Appl. Phys. Lett., 102, 123905 (2013). [DOI: http://dx.doi.org/10.1063/1.4799643]
  18. J. Li, J. Sui, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, Y. Pei, and L. D. Zhao, J. Alloy. Compd., 551, 649 (2013). [DOI: http://dx.doi.org/10.1016/j.jallcom.2012.10.160]
  19. F. Li, T. R. Wei, F. Kang, and J. F. Li, J. Mater. Chem,. A, 1, 11942 (2013). [DOI: http://dx.doi.org/10.1039/c3ta11806a]
  20. L. D. Zhao, D. Berardan, Y. L. Pei, C. Byl, L. Pinsard-Gaudart, and N. Dragoe, Appl. Phys. Lett,. 97, 092118 (2010). [DOI: http://dx.doi.org/10.1063/1.3485050]
  21. J. Li, J. Sui, Y. Pei, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, J. He, and L. D. Zhao, Energy Environ. Sci., 5, 8543 (2012). [DOI: http://dx.doi.org/10.1039/c2ee22622g]
  22. J. Sui, J. Li, J. He, Y. L. Pei, D. Berardan, H. Wu, N. Dragoe, W. Cai, and L. D. Zhao, Energy Environ. Sci., 6, 2916 (2013). [DOI: http://dx.doi.org/10.1039/c3ee41859f]
  23. L. Pan, D. Berardan, L. Zhao, C. Barreteau, and N. Dragoe, Appl. Phys. Lett., 102, 023902 (2013). [DOI: http://dx.doi.org/10.1063/1.4775593]
  24. S. D. N. Luu and P. Vaqueiro, J. Mater. Chem. A, 1, 12270 (2013). [DOI: http://dx.doi.org/10.1039/c3ta12753b]
  25. J. L. Lan, Y. C. Liu, B. Zhan, Y. H. Lin, B. Zhang, X. Yuan, W. Zhang, W. Xu, and C. W. Nan, Adv. Mater., 25, 5086 (2013). [DOI: http://dx.doi.org/10.1002/adma.201301675]
  26. J. Li, J. Sui, Y. Pei, X. Meng, D. Berardan, N. Dragoe, W. Cai, and L.-D. Zhao, J. Mater. Chem. A, 2, 4903 (2014). [DOI: http://dx.doi.org/10.1039/c3ta14532h]
  27. D. S. Lee, T. H. An, M. Jeong, H.-S. Choi, Y. S. Lim, W. S. Seo, C. H. Park, C. Park, and H. H. Park, Appl. Phys. Lett., 103, 232110 (2013).. [DOI: http://dx.doi.org/10.1063/1.4837475]
  28. Y. Liu, L. D. Zhao, Y. Liu, J. Lan, W. Xu, F. Li, B. P. Zhang, D. Berardan, N. Dragoe, Y. H. Lin, C. W. Nan, J. F. Li, and H. Zhu, J. Am. Chem. Soc., 133, 20112 (2011). [DOI: http://dx.doi.org/10.1021/ja2091195]
  29. Z. Li, C. Xiao, S. Fan, Y. Deng, W. Zhang, B. Ye, and Y. XIe, J. Am. Chem. Soc., 137, 6587 (2015). [DOI: http://dx.doi.org/10.1021/jacs.5b01863]
  30. Y. Liu, J. Ding, B. Xu, J. Lan, Y. Zheng, B. Zhang, Y. Lin, and C. Nan, Appl. Phys. Lett., 106, 233903 (2015). [DOI: http://dx.doi.org/10.1063/1.4922492]
  31. C. Barreteau, D. Berardan, L. D. Zhao, and N. Dragoe, J. Mater. Chem. A, 137, 6587 (2015).
  32. Y. Liu, J. Lan , W. Xu, Y. Liu, Y. L. Pei, B. Cheng, D. B. Liu, Y. H. Lin, and L. D. Zhao, Chem. Commun., 49, 8075 (2013). [DOI: http://dx.doi.org/10.1039/c3cc44578j]
  33. M. A. Green, Appl. Phys. Lett., 67, 2944 (1990).