• 제목/요약/키워드: Thermodynamic function

검색결과 167건 처리시간 0.029초

Calculation of Thermodynamic Properties Through the Use of two New Analytical Expressions for the Partition Function of the Morse Oscillator

  • Glossman, Daniel M.;Castro, Eduardo A.;Fernandez, Francisco M.
    • Bulletin of the Korean Chemical Society
    • /
    • 제5권4호
    • /
    • pp.145-149
    • /
    • 1984
  • The entropy and heat capacity are calculated for the Morse oscillator model in order to test the quality of the partition function recently deduced by two of us. It is found that these analytical expressions are more reliable than the usually accepted one and give better results in the calculation of thermodynamic properties.

신경회로망을 사용한 노이즈가 첨가된 포화증기표의 모델링 (Modelling of noise-added saturated steam table using the neural networks)

  • 이태환;박진현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 춘계종합학술대회 A
    • /
    • pp.205-208
    • /
    • 2008
  • 수치해석에서는 온도, 압력, 비체적, 엔탈피, 엔트로피 등의 수치값이 필요하다. 그런데 증기표의 대부분의 열역학적 성질들은 측정된 값이기 때문에 기본적으로 측정 오차를 가지고 있다. 본 연구에서는 압력 기준의 물의 포화 상태에 대해, 난수를 발생시켜 적절한 크기로 조절한 다음 원래의 성질들에 더하여 인위적으로 노이즈가 포함된 데이터를 만들었다. 이 데이터를 신경회로망과 스플라인 보간법으로 함수 근사를 하였다. 해석 결과 신경회로망이 2차 스플라인 보간법보다 훨씬 더 적은 백분율 오차를 보였으며 이로부터 신경회로망이 측정 오차의 영향을 적게 받는 함수 근사에 적절한 방법임을 확인하였다.

  • PDF

열역학 물성 예측을 위한 분자 시뮬레이션 소프트웨어의 개발 (Development of Molecular Simulation Software for the Prediction of Thermodynamic Properties)

  • 장재언
    • Korean Chemical Engineering Research
    • /
    • 제49권3호
    • /
    • pp.361-366
    • /
    • 2011
  • 몬테칼로 시뮬레이션 방법을 사용하여 유기화합물의 열역학적 물성을 예측하는 새로운 분자 시뮬레이션 소프트웨어를 개발하였다. 분자 구조, 분자간 포텐셜 에너지 함수와 엄밀한 통계역학적 원리로부터 많은 분자들을 포함한 계의 거동에 대한 확률 분포를 구하고 거시적인 계의 열역학적 물성을 계산한다. 본 연구에서 개발된 소프트웨어 cheMC는 윈도우즈 플랫폼에 기반하여 사용자 접근성이 좋고, 가시화 도구 및 차트 생성 기능 등 직관적인 인터페이스로 시뮬레이션 관리가 쉽다. 분자 시뮬레이션은 기존의 상태 방정식을 사용한 열역학 물성 연구를 보완하고, 향후 그 역할이 점점 더 커질 것으로 기대된다.

What Is the Role of Thermodynamics on Protein Stability\ulcorner

  • Gummadi, Sathyanarayana N.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권1호
    • /
    • pp.9-18
    • /
    • 2003
  • The most challenging and emerging field of biotechnology is the tailoring of proteins to attain the desired characteristic properties. In order to increase the stability of proteins and to study the function of proteins, the mechanism by which proteins fold and unfold should be known. It has been debated for a long time how exactly the linear form of a protein is converted into a stable 3-dimensional structure. The literature showed that many theories support the fact that protein folding E5 a Thermodynamically controlled process. It is also possible to predict the mechanism of protein deactivation and Stability to an extent from thermodynamic studies. This article reviewed various theories that have been proposed to explain the process of protein folding after its biosynthesis in ribosomes. The theories of the determination of the thermodynamic properties and the interpretation of thermodynamic data of protein stability are 3150 discussed in this article.

Radiative Transfer Schemes for Hydrodynamical Stellar Surfaces

  • Bach, K.;Robinson, F.J.;Kim, Y.C.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2009년도 한국우주과학회보 제18권2호
    • /
    • pp.24.4-25
    • /
    • 2009
  • We have investigated the radiational fields through a hydrodynamical stellar model atmosphere. Stellar convection zone is the extremely turbulent region composed of partly ionized compressible gases in high temperature. Moreover, super-adiabatic layers are the transition region in energy transport from convection to radiation. Therefore, opacities and thermodynamic properties due to interaction of matter and radiational fields vary significantly with depth. In order to describe radiational fields accurately, the Opacity Distribution Function (ODF) and the Accelerated Lambda Iteration (ALI) have been applied to hydrodynamic medium. As the first result of our radiative transfer, we present time-dependant variation of radiational fields and thermodynamic structures. Our non-gray transfer model has been compared with the conventional Eddington Approximation. Detailed information of radiational fields and thermodynamic properties will provide deeper insight of physical processes inside stellar atmospheres.

  • PDF

2-PCM 잠열축열 시스템의 열역학적 성능 (Thermodynamic performance of 2-PCM latent heat thermal energy storage system)

  • 이세균;우정선;이재효;김한덕
    • 설비공학논문집
    • /
    • 제12권2호
    • /
    • pp.189-199
    • /
    • 2000
  • This paper investigates the thermodynamic performance of latent heat thermal energy storage system using two phase change materials(2-PCM system). The thermodynamic merit of using 2-PCM is clear in terms of exergetic efficiency, which is substantially higher than that of 1-PCM system. Optimum phase change temperature to maximize the exergetic efficiency exists for each case. The heat transfer area ratio of high temperature storage unit, X, becomes another important parameter for 2-PCM system if the phase change temperatures of given materials are different from those of optimum conditions. It is a good approximation for X$_{opt}$ to be 0.5 when optimum phase change temperatures are used. Otherwise X$_{opt}$ is determined differently as a function of given phase change temperatures.res.

  • PDF

대체 소화제의 열역학적 물성 비교 (Comparison of Thermodynamic Properties of Alternative Fire Extinguishing Agent)

  • 김재덕;여미순;이광진;이윤우;장윤호;노경호
    • 한국화재소방학회논문지
    • /
    • 제18권1호
    • /
    • pp.7-12
    • /
    • 2004
  • 몬트리올 의정서에 의해서 규제 받는 CFCs와 Halon의 대체 물질인 HFC-23, HFC-125, HFC-227ea, HFC-236fa와 불활성 화합물 $Ar, N_2, CO_2$의 열역학적 물성인 포화압력, 밀도, 엔탈피, 점도를 비교하였다. 본 연구에서는 소화제의 물성을 문헌 값을 온도의 함수로서 표시하였다. HFC 화합물의 열역학적 물성은 Halon-1301과 비슷하게 나타내었다. 불활성 화합물은 주로 혼합물로 이용되지만, 불활성 화합물의 물성은 Halon-1301에 비하여 바람직하지 않았다.

Molecular Dynamics Simulation of Liquid Alkanes III. Thermodynamic, Structural, and Dynamic Properties of Branched-Chain Alkanes

  • 이송희;이홍;박형숙
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권5호
    • /
    • pp.501-509
    • /
    • 1997
  • In recent papers[Bull. Kor. Chem. Soc. 1996, 17, 735; ibid 1997, 18, 478] we reported results of molecular dynamics (MD) simulations for the thermodynamic, structural, and dynamic properties of liquid normal alkanes, from n-butane to n-heptadecane, using three different models. Two of the three classes of models are collapsed atomic models while the third class is an atomistically detailed model. In the present paper we present results of MD simulations for the corresponding properties of liquid branched-chain alkanes using the same models. The thermodynamic property reflects that the intermolecular interactions become weaker as the shape of the molecule tends to approach that of a sphere and the surface area decreases with branching. Not like observed in the straight-chain alkanes, the structural properties of model Ⅲ from the site-site radial distribution function, the distribution functions of the average end-to-end distance and the root-mean-squared radii of gyration are not much different from those of models Ⅰ and Ⅱ. The branching effect on the self diffusion of liquid alkanes is well predicted from our MD simulation results but not on the viscosity and thermal conductivity.

In-situ Raman Spectroscopic Study of Nickel-base Alloys in Nuclear Power Plants and Its Implications to SCC

  • Kim, Ji Hyun;Bahn, Chi Bum;Hwang, Il Soon
    • Corrosion Science and Technology
    • /
    • 제3권5호
    • /
    • pp.198-208
    • /
    • 2004
  • Although there has been no general agreement on the mechanism of primary water stress corrosion cracking (PWSCC) as one of major degradation modes of Ni-base alloys in pressurized water reactors (PWR's), common postulation derived from previous studies is that the damage to the alloy substrate can be related to mass transport characteristics and/or repair properties of overlaid oxide film. Recently, it was shown that the oxide film structure and PWSCC initiation time as well as crack growth rate were systematically varied as a function of dissolved hydrogen concentration in high temperature water, supporting the postulation. In order to understand how the oxide film composition can vary with water chemistry, this study was conducted to characterize oxide films on Alloy 600 by an in-situ Raman spectroscopy. Based on both experimental and thermodynamic prediction results, Ni/NiO thermodynamic equilibrium condition was defined as a function of electrochemical potential and temperature. The results agree well with Attanasio et al.'s data by contact electrical resistance measurements. The anomalously high PWSCC growth rate consistently observed in the vicinity of Ni/NiO equilibrium is then attributed to weak thermodynamic stability of NiO. Redox-induced phase transition between Ni metal and NiO may undermine the integrity of NiO and enhance presumably the percolation of oxidizing environment through the oxide film, especially along grain boundaries. The redox-induced grain boundary oxide degradation mechanism has been postulated and will be tested by using the in-situ Raman facility.

Ab Initio and Experimental Studies on Dibenzothiazyl-Disulfide

  • Jian, Fang-Fang;Zhang, Ke-Jie;Zhao, Pu-Su;Zheng, Jian
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권7호
    • /
    • pp.1048-1052
    • /
    • 2006
  • Ab initio calculations of the structure, atomic charges and natural bond orbital (NBO) have been performed at HF/6-311G** and B3LYP/6-311G** levels for the title compound of dibenzothiazyl-disulfide. The calculated results show that the two nitrogen atoms have the biggest negative charges and they are the potential sites to react with the metallic ions, which make the title compound become a di-dentate ligand. Vibrational frequencies of the title compound have been obtained and compared with the experimental value and the comparison indicates that B3LYP/6-311G** level is better than HF/6-311G** level to predict the vibrational frequencies for the system studied here. For the title compound, electronic absorption spectra calculated by time?ependent density functional theory (TD-DFT) are more accurate than Hartree-Focksingle-excitation CI (CI-Singles) method. NBO analyses show that the electronic transitions are mainly derived from the contribution of bands $\pi\rightarrow\pi^{*}$. Thermodynamic calculated results show that the formation of the title compound from 2-mercaptobenzothiazole is a spontaneous process at room temperature with the change of free Gibbs being negative value.