References
- J. Biotechnol. v.59 Thermodynamics in biochemical engineering von Stocker,Urs.;A.M.L.van der Wielen https://doi.org/10.1016/S0168-1656(97)00167-3
- Nature v.367 The genetic code by numbers Maddox,J. https://doi.org/10.1038/367111a0
- J. Mol. Evol. v.45 The origin of genetic code and protein synthesis Alberti,S. https://doi.org/10.1007/PL00006240
- J. Mol. Biol. v.38 The origin of genetic code Crick,F.H.C. https://doi.org/10.1016/0022-2836(68)90392-6
- Cell. Mol. Life Sci. v.56 Evolution of genetic code, protein synthesis and nucleic acid replication Alberti,S. https://doi.org/10.1007/s000180050009
- Science v.239 RNA as an RNA polymerase:net elongation of an RNA primer catalysed by the tetrehymena ribozyme Cech,T.R.;B.L.Bass https://doi.org/10.1126/science.2450400
- FEBS Lett. v.498 Protein misfolding and disease:protein refolding and therapy Soto,C. https://doi.org/10.1016/S0014-5793(01)02486-3
- FEBS Lett. v.498 Protein dynamics, folding and misfolding:from basic physical chemistry to human conformational diseases Ferreira,S.T.;F.G.de Felice https://doi.org/10.1016/S0014-5793(01)02491-7
- Biocatalysis:Fundamentals of Deactivation Kinetics Sadana,A.
- Bioproc. Eng. v.21 Enhancing the feasibility of many biotechnological processes through enzyme deactivation studies Srinivas,R.;T.Panda https://doi.org/10.1007/s004490050688
- Cell. Mol. Life Sci. v.53 Protein folding:concepts and perspectives Yon,J.M. https://doi.org/10.1007/s000180050072
- FEBS Lett. v.285 How does protein synthesis give rise to the 3D-structure? Ptitsyn,O.B. https://doi.org/10.1016/0014-5793(91)80799-9
- Proc. Natl. Acad. Sci. USA v.47 The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain Anfinsen,C.B.;E.Harber;M.Sela;F.H.White https://doi.org/10.1073/pnas.47.9.1309
- Cell. Mol. Life Sci. v.54 Enzymes and the supramolecular organization of the living cell. Information transfer within supramolecular edifices and imprinting effects Ricard,J.;B.Gontero;L.Avilan;S.Lebreton https://doi.org/10.1007/s000180050250
- Nature v.352 Chaperonin-mediated protein folding at the surface of GroEl through a 'molten globule' like intermediate Martin,J.;T.Langer;R.Boteva;A.Schramel;A.L.Horwich;F.U.Hartl https://doi.org/10.1038/352036a0
- Trends Biochem. Sci. v.14 Molecular chaperones:proteins essential for the biogenesis of some macramolecular structures Ellis,R.J.;S.M.Hemmingsen https://doi.org/10.1016/0968-0004(89)90168-0
- Annu. Rev. Biochem. v.60 Molecular chaperones Ellis,R.J. https://doi.org/10.1146/annurev.bi.60.070191.001541
- Nature v.332 A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides Deshaies,R.J.;B.D.Koch;M.Werner-Washburne;E.A.Craig;R.Schekman https://doi.org/10.1038/332800a0
- Traffic v.2 The unfolded protein response: no longer just a special teams player Spear,E.;D.T.Ng https://doi.org/10.1034/j.1600-0854.2001.20801.x
- Science v.293 Protein synthesis. The perks of balancing glucose Sonenberg,N.;C.B.Newgard https://doi.org/10.1126/science.1062937
- J. Bacteriol v.183 Genetic evidence for parallel pathways of chaperone activity in the periplasm of Escherichia coli Rizzitello,A.E.;J.R.Harper;T.J.Silhavy https://doi.org/10.1128/JB.183.23.6794-6800.2001
- Eur. J. Biochem. v.268 Thermodynamics of the folding of D-glyceraldehyde-3-phosphate dehydrogenase assited by protein disulfide isomerase studied by microcalorimetry Lang,Y.;J.Li.;J.Chen;C.C.Wang https://doi.org/10.1046/j.1432-1327.2001.02330.x
- Proteins v.40 Empirical calculation of the relative free energies of peptide binding to the molecular chaperone DnaK Kasper,P;P.Christen;H.Gehring https://doi.org/10.1002/(SICI)1097-0134(20000801)40:2<185::AID-PROT20>3.0.CO;2-X
- Cell Stress Chaperones v.4 ATP lowers the activation enthalpy barriers to DnaK-peptide complex formation and dissociation Farr,C.D.;S.N.Witt https://doi.org/10.1379/1466-1268(1999)004<0077:ALTAEB>2.3.CO;2
- Cell Stress Chaperones v.7 Chaperones come of age Sooti,C.;P.Csermely https://doi.org/10.1379/1466-1268(2002)007<0186:CCOA>2.0.CO;2
- J. Biol. Chem. v.275 Age-related decline in chaperone mediated autophagy Cuervo,A.M.;J.F.Dice https://doi.org/10.1074/jbc.M002102200
- J.Gerontol. A Biol. Sci. Med. Sci. v.55 Increased hsp22 RNA levels in Drosophila lines genetically selected for increased longevity Kurapati,R.;H.B.Passanti;M.R.Rose;J.Tower https://doi.org/10.1093/gerona/55.11.B552
- J. Chem. Phys. v.65 Are there pathways for protein folding? Levinthal,C.
- Nature v.260 Protein folding dynamics Karplus,M.;D.L.Weaver https://doi.org/10.1038/260404a0
- Protein Sci. v.3 Protein folding dynamics:the diffusion collision model and experimental data Karplus,M.;D.L.Weaver https://doi.org/10.1002/pro.5560030413
- Adv. Prot. Chem v.34 Folding of protein fragments Wetlaufer,D.B. https://doi.org/10.1016/S0065-3233(08)60518-5
- Adv. Prot. Chem. v.12 Some factors in the interpretation of protein denaturation Kauzmann,W.
- Biochemistry v.24 theory for the folding and stability of globular proteins Dill,K.A. https://doi.org/10.1021/bi00327a032
- Protein Struct. Funct. Genet v.21 Funnels, pathways and the energy landscape of protein folding:A synthesis. Bryngelson,J.D.;J.N.Onuchic;N.D.Socci;P.G.Wolynes
- Science v.267 Navigating the folding routes Wolynes, P.G.;J.N.Onuchic;D.Thirumalai https://doi.org/10.1126/science.7886447
- Curr. Opin. Struct. Biol. v.2 Role of accessory protein in protein folding Lorimer,G.H. https://doi.org/10.1016/0959-440X(92)90172-4
- Biochemistry v.35 Influence of the carbohydrate moiety on the stability of glycoproteins Wang,C.;M.Enfemi;C.Turano;A.Giartoise,A. https://doi.org/10.1021/bi9517704
- Physico-chemical approach to the denaturation of proteins Joly,M.
- J. Chem. Phys. v.3 The activated complex in chemical reactions Eyring,H. https://doi.org/10.1063/1.1749604
- Eur. Biophys. J. v.27 Themodynamics and kinetics of thermal unfolding of plastocyanin Milardi,D.;C.La Rosa;D.Grasso;R.Quzzi;L.Sportelli;C.Fini https://doi.org/10.1007/s002490050134
- Protein Eng. v.7 Thermosensitive mutants of aspergillus awamori by random mutagenesis:inactivation kinetics and structural interpretation Flory,N.;M.Gorman;P.M.Coutinho;C.Ford;P.J.Reilly https://doi.org/10.1093/protein/7.8.1005
- Biotechnol. Bioeng. v.43 Increased the thermostability of Asn 182-Ala mutant Aspergillus awamori glucoamylase Chen,H.M.;U.Bakir;C.Ford;P.J.Reilly https://doi.org/10.1002/bit.260430113
- Protein Eng. v.9 Effect of replacing helican glycine residues with alanines on reversible and irreversible stability and production of Aspergillus awamori glucoamylase Chen,H.M.;Y.Li;T.Panda;F.U.BUucher;C.Ford;P.J.Reilly https://doi.org/10.1093/protein/9.6.499
- Bioichem. J. v.319 Thermodynamic studies of substrate binding and spin transitions in human cytochrome P-450 3A4 expressed in yeast microsomes Renaud,J.P.;D.R.Davydov;K.P.M.Heirwegh;D.Mansuy;G.Hui Bon Hoa https://doi.org/10.1042/bj3190675
- Porc. Natl. Acad. Sci. USA. v.84 Enhanced protein thermostability from sitedirected mutations that decrease the entropy of unfolding Matthews,B.W.;H.Nicholson;W.J.Becktel https://doi.org/10.1073/pnas.84.19.6663
- Nature v.342 Substantial increase of protein stability by multiple disulfide bonds Matsumura,M.;G.Signer;B.W.Matthews https://doi.org/10.1038/342291a0
- J. Biol. Chem. v.23 Plasma and recombinant thrombin activable fibrinolysis inhibitor(TAFI) and activate TAFI compared with repect to glycosylation, thrombin.thrombomodulin-dependent activation, thermal stability and enzymatic properties Boffa,M.B.;W.Wang;L.Bajzar;M.E.Nesheim
- Eur. J. Biochem. v.243 Properties of truncated forms ot the elongation factor 1а from the archaeon Sulfolobus solfataricus Masulla,M.;G.Ianniciello;P.Arcari;V.Bocchini https://doi.org/10.1111/j.1432-1033.1997.0468a.x
- Biochem. Eng. J. v.2 Application of response surface methodology to evaluate some aspects on stability of pectolytic enzymes from Aspergillus niger Naidu,G.S.N.;T.Panda https://doi.org/10.1016/S1369-703X(98)00019-9
- Ph. D. Thesis. Indian Institute of Technology-Madras Studies on Behviour and production of Extracelluar Pectinases from Aspergillus niger Naidu,G.N.S.
- Bioproc. Eng. v.16 pH and thermal stability studies of chitinase from Trichoderma harzianum Kapat,A.;T.Panda
- J. pharm. Biomed. Anal. v.19 Use of entropies of reaction to predict changes in protein stability: tyrosine-67-phenylalanine variants of rat cytocrome c and yeast iso-1 cytocrmes c Feinberg,B.A.;L.Petro;G.Hock;W.Qin;E.Margoliash https://doi.org/10.1016/S0731-7085(98)00291-X
- Modification of Enzyme Activity Foster,R.L.
- FEBS Lett. v.527 Desolvation shell of hydrogen bonds in folded proteins, protein complexes and folding pathways Fernandez,A. https://doi.org/10.1016/S0014-5793(02)03204-0
- Biochem. J. v.303 Increased thermostability of proteins in the presence of amino acids Taneja,S.;F.Ahmad https://doi.org/10.1042/bj3030147
- FEBS Lett. v.526 Impotant amino acid properties for determining the transition state structures of two-state protein mutants Gromiha,M.M.;S.Selvaraj https://doi.org/10.1016/S0014-5793(02)03122-8
- Biochim. Biophys. Acta v.1429 Cold denaturation of ubiquitin Ibarra-Molero,B.;G.I.Makhatadze;J.M.Sanchez-Ruiz https://doi.org/10.1016/S0167-4838(98)00252-0
- Thermochim. Acta v.308 Mutational effects on cold denaturation and hydration of a protein, Streptomyces subtilisin inhibitor A.Tamura https://doi.org/10.1016/S0040-6031(97)00327-4
- Protein Protease Inhibitors - The Case of Streptomyces Subtilisin Inhibitor(SSI) Hiromi,K.;K.Akasaka;Y.Mitsui;B.Tonomura;S.Murao
-
Biochem. J.
v.303
Thermal stability of methanol dehydrogenase is altered by the replacement of enzyme bound
$Ca^{2+}$ with$Sr^{2+}$ Harris,H.K.;V.L.Davidson https://doi.org/10.1042/bj3030141 - Biochemistry v.36 Thermodynamics of binding of distal calcium to manganses peroxidase Sutherland,G.R.J.;S.D.Aust https://doi.org/10.1021/bi970484k
- J. Mol. Biol. v.324 Differential salt-induced stabilization of structure in the initial folding intermediate ensemble of barstar Pradeep,L.;J.B.Udganokar https://doi.org/10.1016/S0022-2836(02)01068-9
- Int. J. Biochem. Cell Biol. v.34 Effect of organic solvents on stability and activity of two related alcohol dehydrogenases:a comparative study Miroliaei,M.;M.Nemat-Gorgani https://doi.org/10.1016/S1357-2725(01)00109-1
- Pharm. Res. v.18 In situ study of insulin aggregation induced by water-organic solvent interface Kwon,Y.M.;M.Baudys;K.Knutson;S.W.Kim https://doi.org/10.1023/A:1013334916162
- Biochemistry v.40 Insights into the stability of native and partially folded states of ubiquitin: effects of cosolvents and denaturants on the thermodynamics of protein folding Jourdan,M.;M.S.Searle https://doi.org/10.1021/bi010767j
- Q Rev. Biophys. v.31 Trifluoroethanl and colleagues:cosolvents with peptides and proteins Buck,M. https://doi.org/10.1017/S003358359800345X
- Biochemistry v.6f3 Chemical modifaication and chemical cross-linking for protein/enzyme stabilization Tyagi,R.;M.N.Gupta
- Curr. Pharm. Biotechnol. v.1 Characterization of protein and peptide stability and solubility in non-aqueous solvents Stevenson,C.L. https://doi.org/10.2174/1389201003378942
- Bioorg. Med. Chem. Lett. v.10 Templating peptide folding on the surface of a micelle: nucleating the formation of a beta-hairpin Searle,M.S.;M.Jourdan https://doi.org/10.1016/S0960-894X(00)00192-X
- Trends Biotechnol. v.11 Mechanism based strategies for protein thermostabilization Mozhaev,V. https://doi.org/10.1016/0167-7799(93)90057-G
- Trends Biotechnol. v.14 Thermozymes:identifying molecule determinants of protein structural and functional stability Vieille,C.;J.G.Zeikus https://doi.org/10.1016/0167-7799(96)10026-3
- Abstracts of 2001 Meeting of American Chemical Society Thermodynamics of high temperature enzymes:A new predictive model Dale,B.E.;Y.Wany
- Protein Eng. v.1 The engineering of disulfide bonds, electrostatic interactions and hydrophobic contacts for the stabilization of subtilisin BPN Pantoliano,M.W.;R.C.Ladner;P.N.Bryan;M.L.Rollence;J.F.Wood;G.L.Gilliland
- Biochemistry v.26 Protein engineering of subtilisin BPN':Enhanced stabilization through the introduction of two cysteines to form a double bond Pantoliano,M.W.;R.C.Ladner;P.N.Bryan;M.L.Rollence;J.F.Wood;J.L.Poulos https://doi.org/10.1021/bi00382a002
- Proc. Natl. Acad. Sci. USA v.83 Predicting DNA duplex stability from the base sequence Breslauer,K.J.;R.Frank;H.Bloecker;L.A.Marky https://doi.org/10.1073/pnas.83.11.3746
- Biophys. J. v.72 The statistical-thermodynamic basis for computation of binding affinities:A critical reivew Glison,M.K.;J.A.Given;B.L.Bush;J.A.McCammon https://doi.org/10.1016/S0006-3495(97)78756-3
- Proc. Natl. Acad. Sci. USA v.99 Conformational landscape of cytochrome c folding studies by microsecond resolved small-angel X-ray scattering Akiyama,S.;S.Takahashi;T.Kimura;K.Ishimori;I.Morishima;Y.Nishikawa;T.Fujisawa
- Proc. Natl. Acad. Sci. USA v.99 Viewing protein folding from many perspectives BrooksⅢ,C.L. https://doi.org/10.1073/pnas.042708199
- Biophys. J. v.8 Heat capacity of protein folding Bakk,A.;H.S.Joyes;A.Hansen
- Protein. Eng. v.14 Solvent entropy-driven searching for protein modelling examined and tested in simplified models Konig,R.;T.Dandekar https://doi.org/10.1093/protein/14.5.329
- Proteins Struct. Function Gen. v.48 Triage:Protein fold prediction He,H.;G.McAllister;T.F.smith https://doi.org/10.1002/prot.10194