What Is the Role of Thermodynamics on Protein Stability\ulcorner

  • Published : 2003.01.01

Abstract

The most challenging and emerging field of biotechnology is the tailoring of proteins to attain the desired characteristic properties. In order to increase the stability of proteins and to study the function of proteins, the mechanism by which proteins fold and unfold should be known. It has been debated for a long time how exactly the linear form of a protein is converted into a stable 3-dimensional structure. The literature showed that many theories support the fact that protein folding E5 a Thermodynamically controlled process. It is also possible to predict the mechanism of protein deactivation and Stability to an extent from thermodynamic studies. This article reviewed various theories that have been proposed to explain the process of protein folding after its biosynthesis in ribosomes. The theories of the determination of the thermodynamic properties and the interpretation of thermodynamic data of protein stability are 3150 discussed in this article.

Keywords

References

  1. J. Biotechnol. v.59 Thermodynamics in biochemical engineering von Stocker,Urs.;A.M.L.van der Wielen https://doi.org/10.1016/S0168-1656(97)00167-3
  2. Nature v.367 The genetic code by numbers Maddox,J. https://doi.org/10.1038/367111a0
  3. J. Mol. Evol. v.45 The origin of genetic code and protein synthesis Alberti,S. https://doi.org/10.1007/PL00006240
  4. J. Mol. Biol. v.38 The origin of genetic code Crick,F.H.C. https://doi.org/10.1016/0022-2836(68)90392-6
  5. Cell. Mol. Life Sci. v.56 Evolution of genetic code, protein synthesis and nucleic acid replication Alberti,S. https://doi.org/10.1007/s000180050009
  6. Science v.239 RNA as an RNA polymerase:net elongation of an RNA primer catalysed by the tetrehymena ribozyme Cech,T.R.;B.L.Bass https://doi.org/10.1126/science.2450400
  7. FEBS Lett. v.498 Protein misfolding and disease:protein refolding and therapy Soto,C. https://doi.org/10.1016/S0014-5793(01)02486-3
  8. FEBS Lett. v.498 Protein dynamics, folding and misfolding:from basic physical chemistry to human conformational diseases Ferreira,S.T.;F.G.de Felice https://doi.org/10.1016/S0014-5793(01)02491-7
  9. Biocatalysis:Fundamentals of Deactivation Kinetics Sadana,A.
  10. Bioproc. Eng. v.21 Enhancing the feasibility of many biotechnological processes through enzyme deactivation studies Srinivas,R.;T.Panda https://doi.org/10.1007/s004490050688
  11. Cell. Mol. Life Sci. v.53 Protein folding:concepts and perspectives Yon,J.M. https://doi.org/10.1007/s000180050072
  12. FEBS Lett. v.285 How does protein synthesis give rise to the 3D-structure? Ptitsyn,O.B. https://doi.org/10.1016/0014-5793(91)80799-9
  13. Proc. Natl. Acad. Sci. USA v.47 The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain Anfinsen,C.B.;E.Harber;M.Sela;F.H.White https://doi.org/10.1073/pnas.47.9.1309
  14. Cell. Mol. Life Sci. v.54 Enzymes and the supramolecular organization of the living cell. Information transfer within supramolecular edifices and imprinting effects Ricard,J.;B.Gontero;L.Avilan;S.Lebreton https://doi.org/10.1007/s000180050250
  15. Nature v.352 Chaperonin-mediated protein folding at the surface of GroEl through a 'molten globule' like intermediate Martin,J.;T.Langer;R.Boteva;A.Schramel;A.L.Horwich;F.U.Hartl https://doi.org/10.1038/352036a0
  16. Trends Biochem. Sci. v.14 Molecular chaperones:proteins essential for the biogenesis of some macramolecular structures Ellis,R.J.;S.M.Hemmingsen https://doi.org/10.1016/0968-0004(89)90168-0
  17. Annu. Rev. Biochem. v.60 Molecular chaperones Ellis,R.J. https://doi.org/10.1146/annurev.bi.60.070191.001541
  18. Nature v.332 A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides Deshaies,R.J.;B.D.Koch;M.Werner-Washburne;E.A.Craig;R.Schekman https://doi.org/10.1038/332800a0
  19. Traffic v.2 The unfolded protein response: no longer just a special teams player Spear,E.;D.T.Ng https://doi.org/10.1034/j.1600-0854.2001.20801.x
  20. Science v.293 Protein synthesis. The perks of balancing glucose Sonenberg,N.;C.B.Newgard https://doi.org/10.1126/science.1062937
  21. J. Bacteriol v.183 Genetic evidence for parallel pathways of chaperone activity in the periplasm of Escherichia coli Rizzitello,A.E.;J.R.Harper;T.J.Silhavy https://doi.org/10.1128/JB.183.23.6794-6800.2001
  22. Eur. J. Biochem. v.268 Thermodynamics of the folding of D-glyceraldehyde-3-phosphate dehydrogenase assited by protein disulfide isomerase studied by microcalorimetry Lang,Y.;J.Li.;J.Chen;C.C.Wang https://doi.org/10.1046/j.1432-1327.2001.02330.x
  23. Proteins v.40 Empirical calculation of the relative free energies of peptide binding to the molecular chaperone DnaK Kasper,P;P.Christen;H.Gehring https://doi.org/10.1002/(SICI)1097-0134(20000801)40:2<185::AID-PROT20>3.0.CO;2-X
  24. Cell Stress Chaperones v.4 ATP lowers the activation enthalpy barriers to DnaK-peptide complex formation and dissociation Farr,C.D.;S.N.Witt https://doi.org/10.1379/1466-1268(1999)004<0077:ALTAEB>2.3.CO;2
  25. Cell Stress Chaperones v.7 Chaperones come of age Sooti,C.;P.Csermely https://doi.org/10.1379/1466-1268(2002)007<0186:CCOA>2.0.CO;2
  26. J. Biol. Chem. v.275 Age-related decline in chaperone mediated autophagy Cuervo,A.M.;J.F.Dice https://doi.org/10.1074/jbc.M002102200
  27. J.Gerontol. A Biol. Sci. Med. Sci. v.55 Increased hsp22 RNA levels in Drosophila lines genetically selected for increased longevity Kurapati,R.;H.B.Passanti;M.R.Rose;J.Tower https://doi.org/10.1093/gerona/55.11.B552
  28. J. Chem. Phys. v.65 Are there pathways for protein folding? Levinthal,C.
  29. Nature v.260 Protein folding dynamics Karplus,M.;D.L.Weaver https://doi.org/10.1038/260404a0
  30. Protein Sci. v.3 Protein folding dynamics:the diffusion collision model and experimental data Karplus,M.;D.L.Weaver https://doi.org/10.1002/pro.5560030413
  31. Adv. Prot. Chem v.34 Folding of protein fragments Wetlaufer,D.B. https://doi.org/10.1016/S0065-3233(08)60518-5
  32. Adv. Prot. Chem. v.12 Some factors in the interpretation of protein denaturation Kauzmann,W.
  33. Biochemistry v.24 theory for the folding and stability of globular proteins Dill,K.A. https://doi.org/10.1021/bi00327a032
  34. Protein Struct. Funct. Genet v.21 Funnels, pathways and the energy landscape of protein folding:A synthesis. Bryngelson,J.D.;J.N.Onuchic;N.D.Socci;P.G.Wolynes
  35. Science v.267 Navigating the folding routes Wolynes, P.G.;J.N.Onuchic;D.Thirumalai https://doi.org/10.1126/science.7886447
  36. Curr. Opin. Struct. Biol. v.2 Role of accessory protein in protein folding Lorimer,G.H. https://doi.org/10.1016/0959-440X(92)90172-4
  37. Biochemistry v.35 Influence of the carbohydrate moiety on the stability of glycoproteins Wang,C.;M.Enfemi;C.Turano;A.Giartoise,A. https://doi.org/10.1021/bi9517704
  38. Physico-chemical approach to the denaturation of proteins Joly,M.
  39. J. Chem. Phys. v.3 The activated complex in chemical reactions Eyring,H. https://doi.org/10.1063/1.1749604
  40. Eur. Biophys. J. v.27 Themodynamics and kinetics of thermal unfolding of plastocyanin Milardi,D.;C.La Rosa;D.Grasso;R.Quzzi;L.Sportelli;C.Fini https://doi.org/10.1007/s002490050134
  41. Protein Eng. v.7 Thermosensitive mutants of aspergillus awamori by random mutagenesis:inactivation kinetics and structural interpretation Flory,N.;M.Gorman;P.M.Coutinho;C.Ford;P.J.Reilly https://doi.org/10.1093/protein/7.8.1005
  42. Biotechnol. Bioeng. v.43 Increased the thermostability of Asn 182-Ala mutant Aspergillus awamori glucoamylase Chen,H.M.;U.Bakir;C.Ford;P.J.Reilly https://doi.org/10.1002/bit.260430113
  43. Protein Eng. v.9 Effect of replacing helican glycine residues with alanines on reversible and irreversible stability and production of Aspergillus awamori glucoamylase Chen,H.M.;Y.Li;T.Panda;F.U.BUucher;C.Ford;P.J.Reilly https://doi.org/10.1093/protein/9.6.499
  44. Bioichem. J. v.319 Thermodynamic studies of substrate binding and spin transitions in human cytochrome P-450 3A4 expressed in yeast microsomes Renaud,J.P.;D.R.Davydov;K.P.M.Heirwegh;D.Mansuy;G.Hui Bon Hoa https://doi.org/10.1042/bj3190675
  45. Porc. Natl. Acad. Sci. USA. v.84 Enhanced protein thermostability from sitedirected mutations that decrease the entropy of unfolding Matthews,B.W.;H.Nicholson;W.J.Becktel https://doi.org/10.1073/pnas.84.19.6663
  46. Nature v.342 Substantial increase of protein stability by multiple disulfide bonds Matsumura,M.;G.Signer;B.W.Matthews https://doi.org/10.1038/342291a0
  47. J. Biol. Chem. v.23 Plasma and recombinant thrombin activable fibrinolysis inhibitor(TAFI) and activate TAFI compared with repect to glycosylation, thrombin.thrombomodulin-dependent activation, thermal stability and enzymatic properties Boffa,M.B.;W.Wang;L.Bajzar;M.E.Nesheim
  48. Eur. J. Biochem. v.243 Properties of truncated forms ot the elongation factor 1а from the archaeon Sulfolobus solfataricus Masulla,M.;G.Ianniciello;P.Arcari;V.Bocchini https://doi.org/10.1111/j.1432-1033.1997.0468a.x
  49. Biochem. Eng. J. v.2 Application of response surface methodology to evaluate some aspects on stability of pectolytic enzymes from Aspergillus niger Naidu,G.S.N.;T.Panda https://doi.org/10.1016/S1369-703X(98)00019-9
  50. Ph. D. Thesis. Indian Institute of Technology-Madras Studies on Behviour and production of Extracelluar Pectinases from Aspergillus niger Naidu,G.N.S.
  51. Bioproc. Eng. v.16 pH and thermal stability studies of chitinase from Trichoderma harzianum Kapat,A.;T.Panda
  52. J. pharm. Biomed. Anal. v.19 Use of entropies of reaction to predict changes in protein stability: tyrosine-67-phenylalanine variants of rat cytocrome c and yeast iso-1 cytocrmes c Feinberg,B.A.;L.Petro;G.Hock;W.Qin;E.Margoliash https://doi.org/10.1016/S0731-7085(98)00291-X
  53. Modification of Enzyme Activity Foster,R.L.
  54. FEBS Lett. v.527 Desolvation shell of hydrogen bonds in folded proteins, protein complexes and folding pathways Fernandez,A. https://doi.org/10.1016/S0014-5793(02)03204-0
  55. Biochem. J. v.303 Increased thermostability of proteins in the presence of amino acids Taneja,S.;F.Ahmad https://doi.org/10.1042/bj3030147
  56. FEBS Lett. v.526 Impotant amino acid properties for determining the transition state structures of two-state protein mutants Gromiha,M.M.;S.Selvaraj https://doi.org/10.1016/S0014-5793(02)03122-8
  57. Biochim. Biophys. Acta v.1429 Cold denaturation of ubiquitin Ibarra-Molero,B.;G.I.Makhatadze;J.M.Sanchez-Ruiz https://doi.org/10.1016/S0167-4838(98)00252-0
  58. Thermochim. Acta v.308 Mutational effects on cold denaturation and hydration of a protein, Streptomyces subtilisin inhibitor A.Tamura https://doi.org/10.1016/S0040-6031(97)00327-4
  59. Protein Protease Inhibitors - The Case of Streptomyces Subtilisin Inhibitor(SSI) Hiromi,K.;K.Akasaka;Y.Mitsui;B.Tonomura;S.Murao
  60. Biochem. J. v.303 Thermal stability of methanol dehydrogenase is altered by the replacement of enzyme bound $Ca^{2+}$with $Sr^{2+}$ Harris,H.K.;V.L.Davidson https://doi.org/10.1042/bj3030141
  61. Biochemistry v.36 Thermodynamics of binding of distal calcium to manganses peroxidase Sutherland,G.R.J.;S.D.Aust https://doi.org/10.1021/bi970484k
  62. J. Mol. Biol. v.324 Differential salt-induced stabilization of structure in the initial folding intermediate ensemble of barstar Pradeep,L.;J.B.Udganokar https://doi.org/10.1016/S0022-2836(02)01068-9
  63. Int. J. Biochem. Cell Biol. v.34 Effect of organic solvents on stability and activity of two related alcohol dehydrogenases:a comparative study Miroliaei,M.;M.Nemat-Gorgani https://doi.org/10.1016/S1357-2725(01)00109-1
  64. Pharm. Res. v.18 In situ study of insulin aggregation induced by water-organic solvent interface Kwon,Y.M.;M.Baudys;K.Knutson;S.W.Kim https://doi.org/10.1023/A:1013334916162
  65. Biochemistry v.40 Insights into the stability of native and partially folded states of ubiquitin: effects of cosolvents and denaturants on the thermodynamics of protein folding Jourdan,M.;M.S.Searle https://doi.org/10.1021/bi010767j
  66. Q Rev. Biophys. v.31 Trifluoroethanl and colleagues:cosolvents with peptides and proteins Buck,M. https://doi.org/10.1017/S003358359800345X
  67. Biochemistry v.6f3 Chemical modifaication and chemical cross-linking for protein/enzyme stabilization Tyagi,R.;M.N.Gupta
  68. Curr. Pharm. Biotechnol. v.1 Characterization of protein and peptide stability and solubility in non-aqueous solvents Stevenson,C.L. https://doi.org/10.2174/1389201003378942
  69. Bioorg. Med. Chem. Lett. v.10 Templating peptide folding on the surface of a micelle: nucleating the formation of a beta-hairpin Searle,M.S.;M.Jourdan https://doi.org/10.1016/S0960-894X(00)00192-X
  70. Trends Biotechnol. v.11 Mechanism based strategies for protein thermostabilization Mozhaev,V. https://doi.org/10.1016/0167-7799(93)90057-G
  71. Trends Biotechnol. v.14 Thermozymes:identifying molecule determinants of protein structural and functional stability Vieille,C.;J.G.Zeikus https://doi.org/10.1016/0167-7799(96)10026-3
  72. Abstracts of 2001 Meeting of American Chemical Society Thermodynamics of high temperature enzymes:A new predictive model Dale,B.E.;Y.Wany
  73. Protein Eng. v.1 The engineering of disulfide bonds, electrostatic interactions and hydrophobic contacts for the stabilization of subtilisin BPN Pantoliano,M.W.;R.C.Ladner;P.N.Bryan;M.L.Rollence;J.F.Wood;G.L.Gilliland
  74. Biochemistry v.26 Protein engineering of subtilisin BPN':Enhanced stabilization through the introduction of two cysteines to form a double bond Pantoliano,M.W.;R.C.Ladner;P.N.Bryan;M.L.Rollence;J.F.Wood;J.L.Poulos https://doi.org/10.1021/bi00382a002
  75. Proc. Natl. Acad. Sci. USA v.83 Predicting DNA duplex stability from the base sequence Breslauer,K.J.;R.Frank;H.Bloecker;L.A.Marky https://doi.org/10.1073/pnas.83.11.3746
  76. Biophys. J. v.72 The statistical-thermodynamic basis for computation of binding affinities:A critical reivew Glison,M.K.;J.A.Given;B.L.Bush;J.A.McCammon https://doi.org/10.1016/S0006-3495(97)78756-3
  77. Proc. Natl. Acad. Sci. USA v.99 Conformational landscape of cytochrome c folding studies by microsecond resolved small-angel X-ray scattering Akiyama,S.;S.Takahashi;T.Kimura;K.Ishimori;I.Morishima;Y.Nishikawa;T.Fujisawa
  78. Proc. Natl. Acad. Sci. USA v.99 Viewing protein folding from many perspectives BrooksⅢ,C.L. https://doi.org/10.1073/pnas.042708199
  79. Biophys. J. v.8 Heat capacity of protein folding Bakk,A.;H.S.Joyes;A.Hansen
  80. Protein. Eng. v.14 Solvent entropy-driven searching for protein modelling examined and tested in simplified models Konig,R.;T.Dandekar https://doi.org/10.1093/protein/14.5.329
  81. Proteins Struct. Function Gen. v.48 Triage:Protein fold prediction He,H.;G.McAllister;T.F.smith https://doi.org/10.1002/prot.10194