• Title/Summary/Keyword: Thermodynamic efficiency

Search Result 245, Processing Time 0.028 seconds

증기조건 향상에 따른 증기터빈 기술동향

  • Na, Un-Hak
    • 열병합발전
    • /
    • s.36
    • /
    • pp.16-21
    • /
    • 2003
  • For many years, T/G Supplier has constructed a number of thermal power plants and researched to improve the performance and the reliability of steam turbine, which are achieved by advances in design and materials technology. In recent, interest is renewed in advance steam condition as means of improving economy of thermal power plant and reducing environmental pollution. Improvements in the maximum power have been driven by the development of advanced rotor and bucket material and longer last stage bucket. Improvements in efficiency have been brought through advance in mechanical efficiency and thermodynamic efficiency. This paper describes a number of new steam path design features introduced to the steam turbine product. And also this paper describes new design technologies' development, new technologies' trend and technologies' development for ultra-super critical steam turbine.

  • PDF

Steam Turbine Technology for Advanced Steam Condition (증기조건 향상에 따른 증기터빈 기술 동향)

  • Nah, U.H.;Cho, S.I.;Shin, H.;Kim, Y.S.;Yang, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2174-2179
    • /
    • 2003
  • For many years, T/G Supplier has constructed a number of thermal power plants and researched to improve the performance and the reliability of steam turbine, which are achieved by advances in design and materials technology. In recent, interest is renewed in advanced steam condition as means of improving economy of thermal power plant and reducing environmental pollution. Improvements in the maximum power have been driven by the development of advanced rotor and bucket material and longer last stage bucket. Improvements in efficiency have been brought through advances in mechanical efficiency and thermodynamic efficiency. This paper describes a number of new steam path design features introduced to the steam turbine product. And also this paper describes new design technologies' development, new technologies' trend and technologies' development for ultra-super critical steam turbine.

  • PDF

Design of an Absorption Heat Transformer with Methanol-Glycerine System as a Working Fluid (메탄올-글리세린 계를 작동유체로 하는 변형흡수식 열펌프 설계)

  • Chung, Chan-Kyo;Min, Byong-Hun
    • Clean Technology
    • /
    • v.11 no.1
    • /
    • pp.13-19
    • /
    • 2005
  • An absorption heat transformer for energy recovery has been investigated using methanol-glycerine. The simulated calculation of theoretical thermal efficiency was performed based on the thermodynamic properties of the working fluid over various operating conditions. The thermal efficiency of higher than 0.4 was obtained by raising industrial waste heat, $70-80^{\circ}C$, by $40^{\circ}C$ in this system.

  • PDF

Smart Suction Muffler for a Reciprocating Compressor (왕복동 압축기에서의 고효율, 저소음 흡입머플러 개발)

  • Ju, Jae-Man;Choe, Jin-Gyu;O, Sang-Gyeong;Park, Seong-U
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1429-1436
    • /
    • 2000
  • Suction muffler is one of the important component of a compressor for low noise level and high efficiency. The suction muffler which has the complicated flow path gives the higher transmission loss of sound, but lower efficiency of compressor results from the superheating effect and flow loss in suction flow path. It is shown that the computational analysis of fluid dynamics are very popular methods for designing of high performance and low noise suction muffler. To reduce the thermodynamic and flow loss in suction process, the flow path of suction muffler was estimated by FVM(Finite Volume Method) and verified by experiments. And to enlarge the transmission loss of sound, the acoustic properties inside the suction muffler was analyzed by FEM(Finite Element Method) and experiments. The smart muffler which gives a good efficiency and low noise character was developed by using those methods, and the effect was evaluated in compressor by experiment.

  • PDF

Comparative Thermodynamic Analysis of Organic Rankine Cycle and Ammonia-Water Rankine Cycle (유기랭킨사이클과 암모니아-물 랭킨사이클의 열역학적 성능의 비교 해석)

  • KIM, KYOUNG HOON;KIM, MAN-HOE
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.5
    • /
    • pp.597-603
    • /
    • 2016
  • In this paper a comparative thermodynamics analysis is carried out for organic Rankine cycle (ORC) and ammonia-water Rankine cycle (AWRC) utilizing low-grade heat sources. Effects of the working fluid, ammonia concentration, and turbine inlet pressure are systematically investigated on the system performance such as mass flow rate, pressure ratio, turbine-exit volume flow, and net power production as well as the thermal efficiency. Results show that ORC with a proper working fluid shows higher thermal efficiency than AWRC, however, AWRC shows lower mass flow rate of working fluid and lower pressure ratio of expander than ORC.

A Thermodynamic Study on Exhaust Heated Gas Turbine Cycle (연소기 후치 가스터빈에 관한 열역학적 연구)

  • Park, J.K.;Ohu, S.C.;Yang, O.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.18-28
    • /
    • 1994
  • An exhaust-heated gas turbine cycle equipped with a waste heat recovery boiler and ammonia absorption-type refrigerator using waste heat is newly devised and analyzed. The general performance of this cycle is compared with that of the conventional gas turbine cycle. This cycle shows a potential high efficiency. When 1500K of gas turbine inlet temperature the efficiency is 53 percent as compared to 45 percent for a conventional combined cycle. Suction cooling of this cycle leads to improve the thermal efficiency and the specific output.

  • PDF

Effects of Turbine Inlet Temperature on Performance of Regenerative Gas Turbine System with Afterfogging

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.4
    • /
    • pp.141-148
    • /
    • 2009
  • Afterfogging of the regenerative gas turbine system has an advantage over inlet fogging in that the high outlet temperature of air compressor makes the injection of more water and the recuperation of more exhaust heat possible. This study investigates the effects of turbine inlet temperature (TIT) on the performance of regenerative gas turbine system with afterfogging through a thermodynamic analysis model. For the standard ambient conditions and the water injection ratios up to 5%, the variation of system performance including the thermal efficiency is numerically analyzed with respect to the variations of TIT and pressure ratio. It is also analyzed how the maximum thermal efficiency, net specific work, and pressure ratio itself change with TIT at the peak points of thermal efficiency curve. All of these are found to increase almost linearly with the increases of both TIT and water injection ratio.

Second law thermodynamic analysis of nanofluid turbulent flow in heat exchanger

  • K. Manjunath
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.125-136
    • /
    • 2022
  • Entropy generation along with exergetic analysis is carried out using turbulent nanofluid flow in the heat exchanger. To obtain the optimized percentage constituent of nanofluid, the nanofluid volume concentrations is varied for the given input conditions. For different Reynolds number of the fluid and heat capacity rate ratio between the streams, the heat transfer improvements are studied in terms of nano particles diameter. Parametric analysis is carried out for a counterflow heat exchanger using turbulent nanofluid flow with exergetic efficiency along with entropy generation number as performance parameters. The exergetic efficiency provides realistic approach in the design of nanofluid applications in heat exchanger leading to conservation of energy.

Experiment of DME autothermal reforming with CGO-based catalysts (CGO 담지 귀금속 촉매를 이용한 DME 자열개질 특성 연구)

  • Choi, Seunghyeon;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.158.2-158.2
    • /
    • 2011
  • DME is acronym of dimethyl ether, which is spotlighted as an ideal fuel to produce hydrogen due to its high hydrogen/carbon ratio, high energy density and easiness to carry. In this research, we calculated thermodynamic hydrogen (or syngas) yield from DME autothermal reforming and compared to other fuels. The reforming efficiency was about 80% above $700^{\circ}C$. Lower OCR has higher reforming efficiency but, it requires additional heat supply since the reactions are endothermic. SCR has no significant effect on the reforming efficiency. The optimized condition is $700^{\circ}C$, SCR 1.5, OCR 0.45 without additional heat supply. Comparing to other commercial gaseous fuels (methane and propane), DME has higher selectivity of $H_2O$ and $CO_2$ than the others due to the oxygen atom in the molecule. To apply DME autothermal reforming to real system, a proper catalyst is required. Therefore, it is performed the experiment comparing various novel metal catalysts based on CGO. Experiments were performed at calculated condition. The composition of product was measured and reforming efficiency was calculated. The catalysts have similar efficiency at high temperature(${\sim}800^{\circ}C$) but, CGO-Ru has the highest efficiency at low temperature ($600^{\circ}C$).

  • PDF

Power and Efficiency Optimization through Exergy Analysis of Power Plant (발전 플랜트의 엑서지 해석으로부터 발전량 및 발전효율 최적화)

  • Kim, Deok-Jin;Lee, Jae-Byoung;Kang, Su-Hwan
    • Plant Journal
    • /
    • v.9 no.3
    • /
    • pp.43-47
    • /
    • 2013
  • Even if an expert who has majored energy engineering, it is a difficult concept to understand power output optimization and power efficiency optimization. In this study a diagram applying thermodynamic state value as specific exergy and exergy ratio was developed. Although general peoples who did not major energy engineering can be easily understand the concept of power output optimization and power efficiency through the developed diagram. A represented property that can identify the performance of power plant is the main steam temperature and pressure. At the developed diagram the maximum power output line and maximum power efficiency line are shown according to the temperature and pressure of main steam. Therefore we can identify how much a power plant approach to maximum power output and maximum power efficiency.

  • PDF