References
- Apmann, K., Fulmer. R., Scherer, B., Good, S., Wohld, J. and Vafaei, S. (2022), "Nanofluid heat transfer: enhancement of the heat transfer coefficient inside microchannels", Nanomater., 12(4), 615. https://doi.org/10.3390/nano12040615.
- Bahiraei, M. and Majd, S.M. (2016), "Prediction of entropy generation for nanofluid flow through a triangular minichannel using neural network", Adv. Powder Technol., 27(2), 673-683. https://doi.org/10.1016/j.apt.2016.02.024.
- Bahiraei, M. and Monavari, A. (2022), "Irreversibility characteristics of a mini shell and tube heat exchanger operating with a nanofluid considering effects of fins and nanoparticle shape", Powder Technol., 7, 117117. https://doi.org/10.1016/j.powtec.2022.117117.
- Bahiraei, M., Naseri, M. and Monavari, A.A. (2021), "Second law analysis on flow of a nanofluid in a shell-and-tube heat exchanger equipped with new unilateral ladder type helical baffles", Powder Technol., 394, 234-249. https://doi.org/10.1016/j.powtec.2021.08.040.
- Bejan, A. (1996), Entropy Generation Minimization CRS Press. Boca Raton.
- Bhattad, A., Sarkar, J. and Ghosh, P. (2019), "Energetic and exergetic performances of plate heat exchanger using brine-based hybrid nanofluid for milk chilling application", Heat Transfer Eng., 41(6-7), https://doi.org/10.1080/01457632.2018.1546770.
- Bhattad, A., Sarkar, J. and Ghosh, P. (2020), "Heat-transfer characteristics of plate heat exchanger using hybrid nanofluids: effect of nanoparticle mixture-ratio", Heat Mass Transfer., 56, 2457-2472. https://doi.org/10.1007/s00231-020-02877-y.
- Bianco, V., Manca, O. and Nardini, S. (2014), "Entropy generation analysis of turbulent convection flow of Al2O3-water nanofluid in a circular tube subjected to constant wall heat flux", Energ. Convers. Manage., 77, 306-314. https://doi.org/10.1016/j.enconman.2013.09.049.
- Garud, K.S., Hwang, S.G., Lim, T.K., Kim, N. and Lee, M.Y. (2021), "First and second law thermodynamic analyses of hybrid nanofluid with different particle shapes in a microplate heat exchanger", Symmetry, 13(8), 1466. https://doi.org/10.3390/sym13081466.
- Irshad, K., Islam, N., Zahir, M.H., Pasha, A.A. and Abdel Gawad, A.F. (2022), "Thermal performance investigation of Therminol55/MWCNT+ CuO nanofluid flow in a heat exchanger from an exergy and entropy approach", Case Studies in Thermal Eng., 34,102010. https://doi.org/10.1016/j.csite.2022.102010.
- Khaleduzzaman, S.S., Sohel, M.R., Mahbubul, I.M., Saidur, R. and Selvaraj, J. (2016), "Exergy and entropy generation analysis of TiO2-water nanofluid flow through the water block as an electronics device", Int. J. Heat Mass Transfer., 101, 104-111. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.026.
- Klein, S.A. (2008), Engineering-Equation-Solver, version 8.158., F-Chart Software, Middleton, WI.
- Kotas, T.J. (2013), The exergy-method of thermal plant analysis.
- Manjunath, K. (2021), "Hybrid nanofluid laminar flow analysis in double pipe heat exchanger (February 28, 2021)", Proceedings of the International Conference on Systems, Energy & Environment (ICSEE) 2021.
- Manjunath, K. (2022), "Optimization of nanofluid parameters for double pipe heat exchanger", Recent Adv. Manufact. Automat. Des. Energ. Technol., 803-814.
- Manjunath, K. and Kaushik, S.C. (2014), "The second law analysis of an unbalanced constructal heat exchanger", Int. J. Green Energ., 11(2), 173-192. https://doi.org/10.1080/15435075.2013.772515.
- Manjunath, K. and Kaushik, S.C. (2015), "Second law efficiency analysis of heat exchangers", Heat Transfer. Asian Res., 44(2), 89-108. https://doi.org/10.1002/htj.21109.
- Manjunath, K., Kaushik, S.C. (2014), "Second law thermodynamic study of heat exchangers: A review", Renew. Sust. Energ. Rev., 40, 348-374. https://doi.org/10.1016/j.rser.2014.07.186.
- Moghaddami, M., Mohammadzade, A. and Esfehani, S.A. (2011), "Second law analysis of nanofluid flow", Energ. Convers. Manage., 52(2),1397-405. https://doi.org/10.1016/j.enconman.2010.10.002.
- Nakhchi, M.E. and Rahmati, M.T. (2021), "Entropy generation of turbulent Cu-water nanofluid flows inside thermal systems equipped with transverse-cut twisted turbulators", J. Therm. Anal. Calorimetry, 143(3), 2475-2484. https://doi.org/10.1007/s10973-020-09960-w.
- Nogueira, E. (2022), "Influence of Nanoparticle Shapes of Boehmite Alumina on the Thermal Performance of a Straight Microchannel Printed Circuit Heat Exchanger", J. Metal. Mater. Res., 5(1).
- Sahoo, R.R. (2021), "Heat transfer and second law characteristics of radiator with dissimilar shape nanoparticle-based ternary hybrid nanofluid", J. Therm. Anal. Calorimetry, 146(2), 827-839. https://doi.org/10.1007/s10973-020-10039-9.
- Shafee, A., Sheikholeslami, M., Jafaryar, M. and Babazadeh, H. (2021), "Irreversibility of hybrid nanoparticles within a pipe fitted with turbulator", J. Therm. Anal. Calorimetry, 143(1), 715-723. https://doi.org/10.1007/s10973-019-09248-8.
- Singh, P.K., Anoop, K.B., Sundararajan, T. and Das, S.K. (2010), "Entropy generation due to flow and heat transfer in nanofluids", Int. J. Heat Mass Transfer., 53(21-22), 4757-4767. https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.016
- Wang, H., Pang, M., Diao, Y. and Zhao, Y. (2022), "Heat transfer characteristics and flow features of nanofluids in parallel flat minichannels", Powder Technol., 402, 117321. https://doi.org/10.1016/j.powtec.2022.117321.
- Yang, L., Baghaei, S., Suksatan, W., Barnoon, P., Davidyants, A. and El-Shafay, A.S. (2022), "Numerical assessment of the influence of helical baffle on the hydrothermal aspects of nanofluid turbulent forced convection inside a heat exchanger", Scientific Reports, 12(1), 1-5. https://doi.org/10.1038/s41598-022-06049-2.