• 제목/요약/키워드: Thermochemical Process

검색결과 132건 처리시간 0.027초

SI 열화학 수소 생산 공정의 분석을 위한 열역학 모델의 적용 (Application of Thermodynamic Models for Analysis on SI Thermochemical Hydrogen Production Process)

  • 이준규;김기섭;박병흥
    • 융복합기술연구소 논문집
    • /
    • 제2권2호
    • /
    • pp.30-34
    • /
    • 2012
  • The SI thermochemical cycle process accomplishes water splitting through distinctive three chemical reactions. We focused on thermodynamic models applicable to the process. Recently, remarkable models based on the assumed ionic species have been developed to describe highly nonideal behavior on the liquid phase reactions. ElecNRTL models with ionic reactions were proposed in order to provide reliable process simulation results for phase equilibrium calculations in Section II and III. In this study, the current thermodynamic models of SI thermochemical cycle process were briefly described and the calculation results of the applied ElecNRTL models for phase equilibrium calculations were illustrated for binary systems.

  • PDF

Uranium thermochemical cycle used for hydrogen production

  • Chen, Aimei;Liu, Chunxia;Liu, Yuxia;Zhang, Lan
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.214-220
    • /
    • 2019
  • Thermochemical cycles have been predominantly used for energy transformation from heat to stored chemical free energy in the form of hydrogen. The thermochemical cycle based on uranium (UTC), proposed by Oak Ridge National Laboratory, has been considered as a better alternative compared to other thermochemical cycles mainly due to its safety and high efficiency. UTC process includes three steps, in which only the first step is unique. Hydrogen production apparatus with hectogram reactants was designed in this study. The results showed that high yield hydrogen was obtained, which was determined by drainage method. The results also indicated that the chemical conversion rate of hydrogen production was in direct proportion to the mass of $Na_2CO_3$, while the solid product was $Na_2UO_4$, instead of $Na_2U_2O_7$. Nevertheless the thermochemical cycle used for hydrogen generation can be closed, and chemical compounds used in these processes can also be recycled. So the cycle with $Na_2UO_4$ as its first reaction product has an advantage over the proposed UTC process, attributed to the fast reaction rate and high hydrogen yield in the first reaction step.

열화학적 방법에 의한 전극용 나노 Cu/Al2O3 복합분말 합성 (Synthesis of Cu/Al2O3 Nanostructured Composite Powders for Electrode Application by Thermochemical Process)

  • 이동원;배정현;김병기
    • 한국분말재료학회지
    • /
    • 제10권5호
    • /
    • pp.337-343
    • /
    • 2003
  • Nanostructured Cu-$Al_2O_3$ composite powders were synthesized by thermochemical process. The synthesis procedures are 1) preparation of precursor powder by spray drying of solution made from water-soluble copper and aluminum nitrates, 2) air heat treatments to evaporate volatile components in the precursor powder and synthesis of nano-structured CuO + $Al_2O_3$, and 3) CuO reduction by hydrogen into pure Cu. The suggested procedures stimulated the formation of the gamma-$Al_2O_3$, and different alumina formation behaviors appeared with various heat treating temperatures. The mean particle size of the final Cu/$Al_2O_3$ composite powders produced was 20 nm, and the electrical conductivity and hardness in the hot-extruded bulk were competitive with Cu/$Al_2O_3$ composite by the conventional internal oxidation process.

원자력의 고온 핵열을 이용한 열화학적 수소제조 프로세스에의 분리막 기술의 응용 (Application of the Membrane Technology in Thermochemical Hydrogen Production Process using High Temperature Nuclear Heat)

  • 황갑진;박주식;이상호;최호상
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2003년도 추계 총회 및 학술발표회
    • /
    • pp.25-33
    • /
    • 2003
  • 원자력 발전의 고온 가스로(high temperature gas-cooled reactor, HTGR)의 냉각제로 사용되는 He가스의 폐열에너지를 이용하여 물을 분해해서 수소를 생산하는 “열화학적 수소제조 IS프로세스”에서의 분리막 기술의 응용에 대해 정리하였다. 고온 원자력 열에너지를 이용한 열화학적 수소 제조법은 실현 가능한 단계까지 왔다고 생각되며, 아직 연구 개발 과제가 많이 남아 있지만, 미래의 청정에너지 중의 하나인 수소를 대량 생산할 수 있는 가능성을 갖고 있다.

  • PDF

High Oxygen Sensitivity of Nanocrystalline Ceria Prepared by a Thermochemical Process

  • Lee, Dong-Won;Yu, Ji-Hoon;Lim, Tae-Soo;Jang, Tae-Suk
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.416-417
    • /
    • 2006
  • Nanostructured ceria powder was synthesized by a thermochemical process and investigated its applicability for an oxygen gas sensor. An amorphous precursor powders prepared by spray drying a cerium-nitrate solution were transformed successfully into nanostructured ceria by heat-treatment in air atmosphere. The powders were a loose agglomerated structure with extremely fine $CeO_2$ particles about 15 nm in size, resulting in a very high specific surface area $(110\;m^2/g)$. The oxygen sensitivity and the response time $t_{90}$ measured at sintered sample at $1000^{\circ}C$ was about -0.25 and very short, i.e., $3{\sim}5$ seconds, respectively.

  • PDF

열화학적 수소제조 IS 프로세스의 효율향상을 위한 전해-전기투석의 실험적 평가 (Evaluation on the Electro-electrodialysis for hydrogen production by thermochemical water-splitting IS process)

  • 홍성대;김정근;이상호;최상일;배기광;황갑진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.13-16
    • /
    • 2006
  • Electro-electrodialysis (EED) experiments were carried out for the HI concentration from HIx $(HI-H_2O-I_2)$ solution to improve the Hl decomposition reaction in the thermochemical water-splitting is (iodine-Sulfur) process. EED cell is composed of the collector electrode and electrolyte. Nafion 117 which was cation exchange membrane used as an electrolyte, and the activated carbon cloth used as an electrode. The HI concentration experiment was carried out using the HIx solution and molar ratio of the $I_2$ were varied from 1 to 3 mole. The cell voltages were decreased as temperature increase. And, membrane properties such as transport number of proton and electro-osmosis coefficient were decreased as temperature increase

  • PDF

SI 열화학 수소 생산 공정 요오드 결정화기 열-물질 수지 계산 (Calculation of Mass-Heat Balance on the Iodine Crystallizer for SI Thermochemical Hydrogen Production Process)

  • 이평종;박병흥
    • 융복합기술연구소 논문집
    • /
    • 제5권1호
    • /
    • pp.1-5
    • /
    • 2015
  • SI thermochemical hydrogen production process achieves water splitting into hydrogen and oxygen through three chemical reactions. The process is comprised of three sections and one of them is HI decomposition into $H_2$ and $I_2$ called as Section III. The production of $H_2$ included processes involving EED for concentrating a product stream from Section I. Additionally an $I_2$ crystallization would be considered to reduce burden on EED by removing certain amount of $I_2$ out of a process stream prior to EED. In this study, the current thermodynamic model of SI process was briefly described and the calculation results of the applied Electrolytes NRTL model for phase equilibrium calculations was illustrated for ternary systems of Section III. We calculated temperature and heat duty of an $I_2$ crystallizer and heat duty of heaters using UVa model and heat balance equation of simulation tool. The results were expected to be used as operation information in optimizing HI decomposition process and setting up material balance throughout SI process.

제올라이트를 이용한 화학축열에 대한 실험적 연구 (Experimental Study on Zeolite 13x for Thermochemical Heat Storage)

  • 하승호;박정훈;이수헌;김광호
    • 설비공학논문집
    • /
    • 제29권8호
    • /
    • pp.429-436
    • /
    • 2017
  • There are three main methods to store heat energy; sensible heat storage, latent heat storage, and thermochemical heat storage. Thermochemical heat storage has the highest storage density among the three methods, so this study focused on the thermochemical heat storage method. Experiments were conducted in this study with Zeolite 13x as thermochemical material in a large-scale reactor with 8 kg of Zeolite 13x. Experiments analyzed storage density of Zeolite 13x with respect to four different heating temperatures ($50^{\circ}C$, $100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$) in heat storage process. As a result, they showed 40~50 percent of storage efficiency in the experiment. Experiments also revealed that reactions between Zeolite 13x and water vapor were reversible and stable, but efficiency of the system was low, compared with sensible heat storage systems or latent heat storage systems.

열화학적 수소 제조 기술 (Themochemical Cycles for Hydrogen Production from Water)

  • 김종원;박주식;황갑진;배기광
    • 에너지공학
    • /
    • 제15권2호
    • /
    • pp.107-117
    • /
    • 2006
  • 물을 분해하여 수소를 만드는 방법으로서 열화학싸이클을 이용한 방법에 대하여 그동안의 연구 동향에 대하여 살펴보았다. 수소생산이란 관점에서 열화학싸이클이 갖는 장점은 일정한 고온의 열을 얻을 수 있다면, 반응속도의 향상과 아울러 대용량화가 가능하다는 점이다. 안정한 물을 분해하려면 물의 산화/환원이 용이한 매개체를 써서 수소 및 산소를 발생하게 하고 순환시키게 되는데, 매개체가 유독성 물질이라면 이 과정에서 누출이 되지 않도록 하여야 한다. 아직 상용화단계에는 미치지 못하였지만, 일본, 스위스, 이스라엘, 미국, 한국 등에서 집중적으로 연구되고 있는 내용은 IS 싸이클과 ZnO/Zn, $Fe_3O_4/FeO$등과 같은 금속산화물계를 이용한 싸이클들이며, 고온용 및 내부식성 소재와 시스템 분야에서 아직 해결해야할 점이 많다.

레이저 유도 열화학 습식에칭을 이용한 티타늄 미세구조물 제조 (Laser-induced Thermochemical Wet Etching of Titanium for Fabrication of Microstructures)

  • 신용산;손승우;정성호
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.32-38
    • /
    • 2004
  • Laser-induced thermochemical wet etching of titanium in phosphoric acid has been investigated to examine the feasibility of this method fur fabrication of microstructures. Cutting, drilling, and milling of titanium foil were carried out while examining the influence of process parameters on etch width, etch depth, and edge straightness. Laser power, scanning speed of workpiece, and etchant concentration were chosen as major process parameters influencing on temperature distribution and reaction rate. Etch width increased almost linearly with laser power showing little dependence on scanning speed while etch depth showed wide variation with both laser power and scanning speed. A well-defined etch profile with good surface quality was obtained at high concentration condition. Fabrication of a hole, micro cantilever beam, and rectangular slot with dimension of tess than 100${\mu}{\textrm}{m}$ has been demonstrated.