Abstract
There are three main methods to store heat energy; sensible heat storage, latent heat storage, and thermochemical heat storage. Thermochemical heat storage has the highest storage density among the three methods, so this study focused on the thermochemical heat storage method. Experiments were conducted in this study with Zeolite 13x as thermochemical material in a large-scale reactor with 8 kg of Zeolite 13x. Experiments analyzed storage density of Zeolite 13x with respect to four different heating temperatures ($50^{\circ}C$, $100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$) in heat storage process. As a result, they showed 40~50 percent of storage efficiency in the experiment. Experiments also revealed that reactions between Zeolite 13x and water vapor were reversible and stable, but efficiency of the system was low, compared with sensible heat storage systems or latent heat storage systems.