• Title/Summary/Keyword: Thermal-mechanical performance

Search Result 1,687, Processing Time 0.027 seconds

Preparation and Properties of Soluble Polyimide with Methacryloyl Group (Methacryloyl기를 함유한 가용성 폴리이미드의 합성과 감광 특성)

  • Yoon, Keun-byoung;Son, Hyung-jun;Lee, Dong-ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.217-222
    • /
    • 2006
  • Polyimides have been investigated extensively and used widely over the past three decades because of their high performance properties such as excellent thermal, mechanical, and electrical properties. Polyimides are difficult to be processed because of the aromatic moieties, imide group, and insoluble nature in most organic solvents. The soluble polyimides were synthesized from 2,2,-bis(3-amino-4-hydroxyphenyl) hexafluoropropane (BAPAF) and 3,3,-diamino-4,4-dihydroxybyphenyl (HAB) as aromatic diamines and 4,4-(hexafluoroisopropylidene)diphthalic dianhydride (6FDA), pyromellitic dianhydride (PMDA), 4,4-oxydiphthalic dianhydride (OPDA), 3,3,4,4-benzophenone tetracarboxylic dianhydride (BTDA) and 3,3,4,4-diphenylsulfone tetracarboxylic dianhydride (DSDA) as aromatic dianhydrides. The polyimides were characterized by NMR, FR-IR, TGA and the dielectric constant of the obtained polyimides was calculated from storage of electro-capacity. A novel photosensitive polyimide was synthesized by the reaction of polyimide, containing hydroxyl group and methacryloyl chloride using triethylamine. The good micro-pattern was obtained with photosensitive polyimide from the photolithographic technique.

New Generation of Lead Free Paste Development

  • Albrecht Hans Juergen;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.233-241
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces strictly related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

New Generation of Lead Free Solder Spheres 'Landal - Seal'

  • Walter H.;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.211-219
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces stric시y related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials. In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

Experimental Evaluation of Fire Behavior of High-Strength CFT Column with Constant Axial Load (일정축력하에 고온을 받는 고강도 콘크리트 충전강관 기둥의 구조적 거동에 관한 연구)

  • Chung, Kyung Soo;Choi, In Rak;Kim, Do Hwan;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.71-80
    • /
    • 2013
  • Fire-resistant (FR) test data for a square concrete-filled steel tube (CFT) columns consisting of high-strength steel (fy>650MPa) and high strength concrete (fck>100MPa) under axial loads are insufficient. The FR behavior of square high-strength CFT members was investigated experimentally for two specimens having ${\Box}-400{\times}400{\times}15{\times}3,000mm$ with two axial load cases (5,000kN and 2,500kN). The results show that the FR performance of the high-strength CFT was rapidly decreased at earlier time (much earlier at high axial load) than expected due to high strength concrete spalling and cracks. In addition, a fiber element analysis (FEA) model was proposed and used to simulate the fiber behaviour of the columns. For steel and concrete, the mechanical and thermal properties recommended in EN 1994-1-2 are adopted. Test results were compared to those of numerical analyses considering a combination of temperature and axial compression. The numerical model can reasonably predict the time-axial deformation relationship.

Validation of FDS for Predicting the Fire Characteristics in the Multi-Compartments of Nuclear Power Plant (Part I: Over-ventilated Fire Condition) (원자력발전소의 다중 구획에서 화재특성 예측을 위한 FDS 검증 (Part I: 과환기화재 조건))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Park, Jong Seok;Do, Kyusik
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.31-39
    • /
    • 2013
  • The Fire Dynamics Simulator (FDS) has been applied to simulate a full-scale pool fire in well-confined and mechanically ventilated multi-compartments representative of nuclear power plant. The predictive performance of FDS was evaluated through a comparison of the numerical data with experimental data obtained by the OECD/NEA PRISME project. To identify clearly the FDS results regarding to the user-dependence in the process of FDS implementation except for the intrinsic limitation of FDS such as simple combustion model, only the over-ventilated fire condition was chosen. In particular, the importance of accurate boundary conditions (B.C.) in mechanically ventilated system were discussed in details. It was known from FDS results that the B.C. on inlet and outlet vents did significantly affect the thermal and chemical characteristics inside the compartments. Finally, it was confirmed that the FDS imposed an accurate ventilation B.C. provided qualitatively good agreement with temperatures, heat fluxes and concentrations measured inside the nuclear-type multi-compartments.

Improvement of Electrochemical Characteristics by Changing Morphologies of Carbon Electrode (탄소 전극 형상 변화에 따른 전기화학 커패시터 특성 향상)

  • Min, Hyung-Seob;Kim, Sang-Sig;Cheong, Deock-Soo;Choi, Won-Kook;Oh, Young-Jei;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.19 no.10
    • /
    • pp.544-549
    • /
    • 2009
  • Activated carbon (AC) with very large surface area has high capacitance per weight. However, such activation methods tend to suffer from low yields, below 50%, and are low in electrode density and capacitance per volume. Carbon NanoFibers (CNFs) had high surface area polarizability, high electrical conductivity and chemical stability, as well as extremely high mechanical strength and modulus, which make them an important material for electrochemical capacitors. The electrochemical properties of immobilized CNF electrodes were studied for use as in electrical double layer capacitor (EDLC) applications. Immobilized CNFs on Ni foam grown by thermal chemical vapor deposition (CVD) were successfully fabricated. CNFs had a uniform diameter range from 50 to 60 nm. Surface area was 56 m$^2$/g. CNF electrodes were compared with AC and multi wall carbon nanotube (MWNT) electrodes. The electrochemical performance of the various electrodes was examined with aqueous electrolyte of 2M KOH. Equivalent series resistance (ESR) of the CNF electrodes was lower than that of AC and MWNT electrodes. The specific capacitance of 47.5 F/g of the CNF electrodes was achieved with discharge current density of 1 mA/cm$^2$.

Study on the Performance of Infrared Thermal Imaging Light Source for Detection of Impact Defects in CFRP Composite Sandwich Panels

  • Park, Hee-Sang;Choi, Man-Yong;Kwon, Koo-Ahn;Park, Jeong-Hak;Choi, Won-Jae;Jung, Hyun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.91-98
    • /
    • 2017
  • Recently, composite materials have been mainly used in the main wings, ailerons, and fuselages of aircraft and rotor blades of helicopters. Composite materials used in rapid moving structures are subject to impact by hail, lightning, and bird strike. Such an impact can destroy fiber tissues in the composite materials as well as deform the composite materials, resulting in various problems such as weakened rigidity of the composite structure and penetration of water into tiny cracks. In this study, experiments were conducted using a 2 kW halogen lamp which is most frequently used as a light source, a 2 kW near-infrared lamp, which is used for heating to a high temperature, and a 6 kW xenon flash lamp which emits a large amount of energy for a moment. CFRP composite sandwich panels using Nomex honeycomb core were used as the specimens. Experiments were carried out under impact damages of 1, 4 and 8 J. It was found that the detection of defects was fast when the xenon flash lamp was used. The detection of damaged regions was excellent when the halogen lamp was used. Furthermore, the near-infrared lamp is an effective technology for showing the surface of a test object.

A Study on Ka band Qualification Model Multiplexers for Communication, Ocean and Meteorological Satellite (COMS) Payload (통신해양기상위성 Ka 대역 인증모델 밀티플렉서에 대한 연구)

  • Eom, Man-Seok;An, Gi-Beom;Yun, So-Hyeon;Gwak, Chang-Su;Yeom, In-Bok
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.63-70
    • /
    • 2006
  • This paper presents the results of Ka band qualification model multiplexers for COMS Payload to be launched in 2008. These are the input and output multiplexers of the satellite transponder to use available frequency resources effectively and the diplexer of the satellite antenna to use the same reflector for both transmitting and receiving frequency bands, respectively. The input multiplexer with four frequency channels has four(4) independent channel filters which consist of an 8-pole elliptic band-pass filter for high frequency selectivity and a 2-pole equalizer for group delay equalization. For low insertion loss, mass and volume reduction, manifold type os employed for output multiplexer. E-plane T-junction is used for either splitting or combining a frequency band into two sub-bands. Asymmetric inductive irises are used to tune the receiving filter easily. The electrical performance and environmental test such as vibration test, mechanical shock test, thermal vacuum test and EMC test are performed and the results of all qualification model multiplexers are compliant to the requirement of each multiplexer. Followed by this qualification, the flight model equipment will be developed.

  • PDF

Design, Manufacturing, and Performance estimation of a Disposal Canister for the Ceramic Waste from Pyroprocessing (파이로 공정 세라믹 폐기물을 위한 처분용기의 설계, 제작 방안, 그리고 기능 평가)

  • Lee, Minsoo;Choi, Heui-Joo;Lee, Jong-Youl;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.209-218
    • /
    • 2012
  • A pyroprocess is currently being developed by KAERI to cope with a highly accumulated spent nuclear fuel in Korea. The pyroprocess produces a certain amount of high-level radioactive waste (HLW), which is solidified by a ceramic binder. The produced ceramic waste will be confined in a secure disposal canister and then placed in a deep geologic formation so as not to contaminate human environment. In this paper, the development of a disposal canister was overviewed by discussing mainly its design premises, constitution, manufacturing methods, corrosion resistance in a deep geologic environment, radiation shielding, and structural stability. The disposal canister should be safe from thermal, chemical, mechanical, and biological invasions for a very long time so as not to release any kind of radionuclides.

Development of a Low-Noise Amplifier System for Nerve Cuff Electrodes (커프 신경전극을 위한 저잡음 증폭기 시스템 개발)

  • Song, Kang-Il;Chu, Jun-Uk;Suh, Jun-Kyo Francis;Choi, Kui-Won;Yoo, Sun-K.;Youn, In-Chan
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.45-54
    • /
    • 2011
  • Cuff electrodes have a benefit for chronic electroneurogram(ENG) recording while minimizing nerve damage. However, the ENG signals are usually contaminated by electromyogram(EMG) activity from the surrounding muscle, the thermal noise generated within the source resistance, and the electric noise generated primarily at the first stage of the amplifier. This paper proposes a new cuff electrode to reduce the interference of EMG signals. An additional middle electrode was placed at the center of cuff electrode. As a result, the proposed cuff electrode achieved a higher signal-to-interference ratio compared to the conventional tripolar cuff. The cuff electrode was then assembled together with closure, headstage, and hermetic case including electronic circuits. This paper also presents a lownoise amplifier system to improve signal-to-noise ratio. The circuit was designed based on the noise analysis to minimize the electronic noise. The result shows that the total noise of the amplifier was below $1{\mu}V_{rms}$ for a cuff impedance of $1\;k{\Omega}$ and the common-mode rejection ratio was 115 dB at 1 kHz. In the current study, the performance of nerve cuff electrode system was evaluated by monitoring afferent nerve signals under mechanical stimuli in a rat animal model.