• Title/Summary/Keyword: Thermal storage Tank

Search Result 280, Processing Time 0.031 seconds

A thermal stress and crack study by computer modelling (전산해석에 의한 온도응력 및 온도균열 검토)

  • 문수동;이상호;문한영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.375-380
    • /
    • 2002
  • Tong-young LNG tank is a LNG storage tank of 140,000 kl, and it is composed of Bottom Slab(Annular, Center), Outer Wall, Ring Beam and Roof. Generally, when concrete temperature arise, the complex thermal stress of inner and outer part can cause serious thermal crack and damage at structure. So in this paper, for the control of this thermal crack, we did the concrete mix design with the base of fly-ash 30% substitute at binder, and through the computer modelling at Bottom Slab(Annular, Center), Outer Wall, Ring Beam and Roof, we studied the probability of thermal crack by thermal crack index.

  • PDF

A Study on the Thermal Characteristics of High Pressure Hydrogen Storage Tank according to Nozzle Angle and Length/Diameter Ratio (고압수소 저장용기의 노즐 각도 및 길이/직경비에 따른 열적 특성 연구)

  • JEONG HWAN YOON;JUNYEONG KWON;KYUNG SOOK JEON;JIN SIK OH;SEUNG JUN OH
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.431-438
    • /
    • 2023
  • Recently, study on hydrogen is being conducted due to environmental pollution and fossil fuel depletion. High-pressure gas hydrogen commonly used is applied to vehicle and tube trailers. In particular, high-pressure hydrogen storage tank for vehicles must comply with the guidelines stipulated in SAE J2601. There is a charging temperature limitation condition for the safety of the storage tank material. In this study, numerical analysis method were verified based on previous studies and the nozzle angle was changed for thermal management to analyze the increase in forced convection effect and energy uniformity due to the promotion of circulation flow. The previously applied high-pressure hydrogen storage tank has a length/diameter ratio of about 2.4 and was analyzed by comparing the length/diameter ratio with 8. As a result, the circulation flow of hydrogen flowing into the high-pressure hydrogen storage tank is promoted at a nozzle angle of 30° than the straight nozzle and accordingly, the effect of suppressing temperature rise by energy uniformity and forced convection was confirmed.

Proposal for Korean Solar Water Heating System (한국형 태양열 온수급탕 시스템의 제안)

  • Choi, Bong-Su;Yoon, Doo-Han;Kim, Sung-Soo;Hong, Hi-Ki
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.105-110
    • /
    • 2006
  • Several types of solar water heating system were analyzed in characteristics and proper systems were proposed under Korean climates. In particular, the forced circulation type with a spiral-jacketed storage tank has a potential to be used widely in a small and a part of middle systems when the stratification of the storage tank can be enhanced by a precise design.

  • PDF

Analysis on the Coldness Release Process of Ice Storage Tank (빙축열조의 방냉과정에 대한 해석)

  • Yoo, H.S.;Kim, Y.I.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.1
    • /
    • pp.9-20
    • /
    • 1989
  • This paper presents an analysis to predict thermal behaviors of water in ice storage tank during the coldness release process. To deal with complicated transient phenomena due to ice-water phase change and the density inversion, a theoretical model which consists of initial perfectly mixed, stratified and thermal diffusion state was introduced and a criterion on the growth of thermal boundary layer was developed. The analysis includes considerations on the type of ice-making heat exchanger, refrigerator on/off and tank arrangement. Also, discussions on the various parameters and operating conditions which have influence on the performance of the system were made. Finally, simulated results were shown, which agreed with experiments in trends reasonably.

  • PDF

A Performance Analysis on a Heat pump with Thermal Storage Adopting Load Response Control Method (부하 대응 제어방식을 적용한 축열식 히트펌프시스템의 성능 해석)

  • Kim, Dong Jun;Kang, Byung Ha;Chang, Young Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.3
    • /
    • pp.130-142
    • /
    • 2018
  • We use heat pumps with thermal storage system to reduce peak usage of electric power during winters and summers. A heat pump stores thermal energy in a thermal storage tank during the night, to meet load requirements during the day. This system stabilizes the supply and demand of electric power; moreover by utilizing the inexpensive midnight electric power, thus making it cost effective. In this study, we propose a system wherein the thermal storage tank and heat pump are modeled using the TRNSYS, whereas the control simulations are performed by (i) conventional control methods (i.e., thermal storage priority method and heat pump priority method); (ii) region control method, which operates at the optimal part load ratio of the heat pump; (iii) load response control method, which minimizes operating cost responding to load; and (iv) dynamic programming method, which runs the system by following the minimum cost path. We observed that the electricity cost using the region control method, load response control approach, and dynamic programing method was lower compared to using conventional control techniques. According to the annual simulation results, the electricity cost utilizing the load response control method is 43% and 4.4% lower than those obtained by the conventional techniques. We can note that the result related to the power cost was similar to that obtained by the dynamic programming method based on the load prediction. We can, therefore, conclude that the load response control method turned out to be more advantageous when compared to the conventional techniques regarding power consumption and electricity costs.

Development of Cold Chain System Using Thermal Storage with Low-Energy Type (저 에너지형 축냉식 저온유통 시스템 개발)

  • Kwon K.H.;Jeong J.W.;Kim J.H.;Choi C.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.3 s.116
    • /
    • pp.161-167
    • /
    • 2006
  • The purpose of this study is to find the optimal conditions of PCM slurry manufacturing equipment for saving the marketing cost and keeping the original quality of products. In addition, the characteristics of the movable container for shipping or distributing products is analysed. The major results are as follows. 1. PCM thermal storage system is designed with the conditions of temperature($-5{\sim}10^{\circ}C$), cold chain time(30 minutes), and one time usage(50 liter). This system includes tank, freezer, circulating pump, cycle type heat exchanger, swelling tank, equipment of supplying PCM supplying unit includes cold tank, cycle type heat exchanger, suction unit and control equipments, etc. 2. After ability test of PCM thermal storage system, it shows that the required freezing time of PCM thermal storage system is less than one of the previous system. The reason is that churn (top and bottom) and compulsion circulation are occurred simultaneously and unit cooler type method is better than chiller type method. 3. By the experiment of transportation latent heat container, it is decided that the best container is $K_1$ with latent heat temperature($0{\sim}5^{\circ}C$) and density(0.15%). However, for $K_l\;and\;K_2$, it is necessary more studies on latent heat thermal conditions and conditions of making method.

Performance Analysis of Water-Water Heat Pump System of 100 kW Scale for Cooling Agricultural Facilities

  • Kang, Youn Ku;Ryou, Young Sun;Jang, Jae Kyung;Kim, Young Hwa;Kim, Jong Goo;Kang, Geum Chun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.34-38
    • /
    • 2014
  • Purpose: In this study, the performance of cooling system with the water-water heat pump system of 100kW scale made for cooling agricultural facilities, especially for horticultural facilities, was analyzed. It was intended to suggest performance criteria and performance improvement for the effective cooling system. Methods: The measuring instruments consisted of two flow meters, a power meter and thermocouples. An ultrasonic and a magnetic flow meter measured the flow rate of the water, which was equivalent to heat transfer fluid. The power meter measured electric power in kW consumed by the heat pump system. T-type thermocouples measured the temperature of each part of the heat pump system. All of measuring instruments were connected to the recorder to store all the data. Results: When the water temperature supplied into the evaporator of the heat pump system was over $20^{\circ}C$, the cooling Coefficient Of Performance(COP) of the system was higher than 3.0. As the water temperature supplied into the evaporator, gradually, lowered, the cooling COP, also, decreased, linearly. Especially, when the water temperature supplied into the evaporator was lower than $15^{\circ}C$, the cooling COP was lower below 2.5. Conclusions: In order to maintain the cooling COP higher than 3.0, we suggest that the water temperature supplied into evaporator from the thermal storage tank should be maintained above $20^{\circ}C$. Also, stratification in the thermal storage tank should be formed well and the circulating pumps and the pipe lines should be arranged in order for the relative low-temperature water to be stored in the lower part of the thermal storage tank.

Analysis of Thermal and Flow Characteristic in Ice Storage Tank (빙축열조 내부의 열적유동 특성 해석)

  • Kim, Y.I.;Hong, H.K.;Bai, C.H.;Kim, Y.I.;Yoon, H.S.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.369-376
    • /
    • 1988
  • Among several methods to solve the unbalanced electric power load, the Ice Storage System (ISS) for the air conditioning is relatively easy to realize and gives big effect on balancing the electric power load. The goals of this study are to develop the practical ISS for the air conditioning through the design, manufacturing and performance test of the experimental ISS (size $0.335m^3$, cold storage capacity 14200 kcal, IPF 0.4). Thermal fluid motion inside the ice storage tank during cooling storage and cooling release are studied. The data are analyzed by the dispersion analysis and optimal design conditions are derived from the result.

  • PDF

Analytical Study on the Temperature and Pressure Changes in DME FPSO Storage Tank with Liquid Filling level (DME FPSO 저장탱크의 액충전량에 따른 온도 및 압력변화에 대한 해석 연구)

  • Yun, Sangkook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1024-1029
    • /
    • 2012
  • As DME (Dimethyl ether) is the one of the future possible massive energy sources synthesized from natural gas, KOGAS has been doing to obtain overseas resources to meet the domestic needs. and tried to build new DME FPSO ship. This paper presents that it can help for the DME storage tank designers and storage management engineers doing proper work by understood the evaporation phenomena and pressure change of DME by thermal intake in storage tank. The experimental result shows that the evaporation rate and pressure are increased with higher liquid filling level. The proper DME liquid filling level in tank is obtained as lower than full 98% volume of tank in case of storing longer than a day, because the pressure is increased rapidly with full 98% filled level of storage tank.