• 제목/요약/키워드: Thermal shock property

검색결과 43건 처리시간 0.027초

TaC 첨가 Ti(C,N)-Ni 서멧의 내열충격 특성 (Thermal Shock Resistance Property of TaC Added Ti(C,N)-Ni Cermets)

  • 신순기
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.526-531
    • /
    • 2014
  • Thermal shock resistance property has recently been considered to be one of the most important basic properties, in the same way that the transverse-rupture property is important for sintered hard materials such as ceramics, cemented carbides, and cermets. Attempts were made to evaluate the thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermets using the infrared radiation heating method. The method uses a thin circular disk that is heated by infrared rays in the central area with a constant heat flux. The technique makes it possible to evaluate the thermal shock strength (Tss) and thermal shock fracture toughness (Tsf) directly from the electric powder charge and the time of fracture, despite the fact that Tss and Tsf consist of the thermal properties of the material tested. Tsf can be measured for a specimen with an edge notch, while Tss cannot be measured for specimens without such a notch. It was thought, however, that Tsf might depend on the radius of curvature of the edge notch. Using the Tsf data, Tss was calculated using a consideration of the stress concentration. The thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermet increased with increases in the content of nitrogen and Ni. As a result, it was considered that Tss could be applied to an evaluation of the thermal shock resistance of cermets.

Thermal Shock Tests and Thermal Shock Parameters for Ceramics

  • Awaji, Hideo;Choi, Seong-Min
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.385-396
    • /
    • 2012
  • Thermal shock test methods and thermal shock parameters for ceramics were reviewed from the following viewpoints: (1) The test methods should be based on the precise estimation of both temperature and thermal stress distributions in a specimen taking into account the temperature-dependent thermo-mechanical properties; (2) The thermal shock parameters must be defined as a physical property of the materials and described as a function of temperature at the fracture point of the specimen; (3) The relation between the strength and fracture toughness of brittle ceramics under a thermal shock load must be the same as the relation under a mechanical load. In addition, appropriate thermal shock parameters should be defined by the thermal shock strength and thermal shock fracture toughness based on stress and energy criteria, respectively. A constant heat flux method is introduced as a testing technique suitable for estimating these thermal shock parameters directly from the electric power charged.

세라믹(PSZ)/금속(NiCrAlY) 경사기능성 복합재료의 화염 열충격 파괴특성 (Fracture Characteristics of Flame Thermal Shock in PSZ/NiCrAlY FGM)

  • 송준희;문상돈
    • 대한금속재료학회지
    • /
    • 제48권8호
    • /
    • pp.775-779
    • /
    • 2010
  • Functionally graded materials (FGM) of PSZ/NiCrAlY on Inconel substrate were fabricated by detonation gun spraying method. A thick ceramic layer generally has a high thermal barrier effect however, because failure often occurs, the use of an FGM layer gives an advantage in thermal property. During the thermal shock test, micro fracture processes were detected by the AE method. Also, the thermal shock test was performed for NFGM, FGM and the changed FGM in the layered composition profile. It was found through AE testing and the observation of fracture surface that FGM was superior to NFGM in thermal shock properties. The linear or metal-rich type FGM in composition profile had the best resisting property among the FGM. It was found that the controlled composition profile of the graded layers had better thermal properties.

초 고온·고압 소결 공정으로 제조된 다결정 다이아몬드 컴팩트의 열충격 특성에 미치는 다이아몬드 입자 크기의 영향 (Effect of Diamond Particle Size on the Thermal Shock Property of High Pressure High Temperature Sintered Polycrystalline Diamond Compact)

  • 김지원;백민석;박희섭;조진현;이기안
    • 한국분말재료학회지
    • /
    • 제23권5호
    • /
    • pp.364-371
    • /
    • 2016
  • This study investigates the thermal shock property of a polycrystalline diamond compact (PDC) produced by a high-pressure, high-temperature (HPHT) sintering process. Three kinds of PDCs are manufactured by the HPHT sintering process using different particle sizes of the initial diamond powders: $8-16{\mu}m$ ($D50=4.3{\mu}m$), $10-20{\mu}m$ ($D50=6.92{\mu}m$), and $12-22{\mu}m$ ($D50=8.94{\mu}m$). The microstructure observation results for the manufactured PDCs reveal that elemental Co and W are present along the interface of the diamond particles. The fractions of Co and WC in the PDC increase as the initial particle size decreases. The manufactured PDCs are subjected to thermal shock tests at two temperatures of $780^{\circ}C$ and $830^{\circ}C$. The results reveal that the PDC with a smaller particle size of diamond easily produces microscale thermal cracks. This is mainly because of the abundant presence of Co and WC phases along the diamond interface and the easy formation of Co-based (CoO, $Co_3O_4$) and W-based ($WO_2$) oxides in the PDC using smaller diamond particles. The microstructural factors for controlling the thermal shock property of PDC material are also discussed.

Thermal Shock Resistance of Bilayered YSZ Thermal Barrier Coating

  • Lee, Dong Heon;Kim, Tae Woo;Lee, Kee Sung;Kim, Chul
    • 한국세라믹학회지
    • /
    • 제55권5호
    • /
    • pp.452-460
    • /
    • 2018
  • This study investigate changes in mechanical behaviors such as indentation load-displacement and hardness of thermal barrier coatings (TBCs) using cycling of thermal shock test. Relatively dense and porous TBCs on nickel-based bondcoat/super alloy are prepared using different starting granules, 204C-NS and 204NS commercial powers, and the effect of double layers of 204C-NS on 204NS and 204NS on 204C-NS are investigated. The highest temperature applied during thermal shock test is $1100^{\circ}C$ and the maximum number of cycles is 1,200. The results indicate that bilayered TBC showed a relatively mechanically resistant property during thermal shock cycles and that the mechanical behavior is influenced by the microstructure of TBCs by exposure to high temperature during tests or different starting granules.

열충격하에 있는 반타원균열에 대한 파괴건전성 평가 (Integrity Evaluation of Semi-Elliptical Crack Under Thermal Shock)

  • 이강용;김종성;김건영
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3136-3148
    • /
    • 1994
  • This paper proposed the method of fracture integrity evaluation for semi-elliptical crack. Plane strain fracture toughnesses are used to compare with the thermal shock stress intensity factors for semi-elliptical crack obtained by Vainshtok weight function method. The method is applied to the finite Cr Mo V and 2.25Cr Mo steel plates with semi-elliptical crack under the thermal shock. For the purpose, tensile property and fracture toughness with respect to the temperature are measured. To verify the method, thermal shock experiments are carried. The theoretical predictions are in good agreement with the experiments.

유리섬유와 열전도성 첨가제가 함유된 PBT 수지의 기계적 물성거동에 미치는 열충격피로의 영향 (Thermal Shock Fatigue Influence on Mechanical Property Behavior of PBT Resin Embedded by Glass Fibers and Thermal Conductive Particles)

  • 김기수;최낙삼;박상대
    • Composites Research
    • /
    • 제27권3호
    • /
    • pp.83-89
    • /
    • 2014
  • 본 연구는 엔지니어링 플라스틱인 Polybutylene terephthalate(PBT)에 첨가물을 넣어 강도와 열전도성, 열충격내구성을 개선시키는 것을 목적으로 한다. 그에 따라 PBT에 유리섬유(Glass Fiber)와 Boron nitride(BN)을 복합적으로 첨가하여, 각각의 조성비에 따른 기계적 특성과 열전도 특성변화를 실험적으로 분석하였다. 시험 결과 BN의 함유량이 증가함에 따라 열전도도는 증가하였고, 기계적 강도는 작아졌다. 열충격싸이클을 가한 결과, 비충전 PBT는 파단 신장률이 작아졌으나 충전 PBT는 강도와 열전도율이 별다른 성질변화가 거의 없었다. BN의 첨가에 따라 PBT 복합재의 열전도도도는 크게 향상되었다.

열 충격에 따른 탄소 직물 복합재료의 역학적 특성 평가 (Evaluation of Mechanical Properties of Carbon Fabrics Composite with Thermal Shock)

  • 김재홍;이중호;정경호;강태진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.79-82
    • /
    • 2005
  • In this study, mechanical properties of carbon fabrics composite under the thermal shock cycling were evaluated. Due to the interactions between fiber and polymer matrix, it is reasonable to conclude that both thermal cycles of thermal shock result in improvement of interlaminar shear strength(ILSS) for the longer conditioning time duration. The rise in ILSS may be attributed to the improved adhesion by cryogenic compressive stress and also by the post-curing strengthening effect. However, the flexural and tensile strength were decreased with increasing conditioning time of thermal cycle.

  • PDF

자동차 전장부품 무연솔더 접합부의 파괴모드 특성에 관한 연구 (A Study on the Fracture Mode Characteristics of Automotive Application Component Lead-free Solder Joints)

  • 전유재;김도석;신영의
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.90-96
    • /
    • 2011
  • In this study, the characteristic of fractured portion and shape on solder joints were investigated according to the thermal shock test for Automotive Application Component using Sn-3.0Ag-0.5Cu solder, which has a outstanding property as Lead-free solder. The value of pull and shear strength was decreased in principle after 432 cycles thermal shock test. In addition, fracture mode was verified by using EDS and SEM to observe fractured shape on the solder joints before and after thermal shock. In before thermal shock test, the fracture mode revealed typically solder layer's fracture mode. In after thermal shock test, we identified multiple fracture mode of the ductile and brittle fracture. Even though same composition of solder was used to experimental for estimating. the fracture mode varied on the fracture portion's height and the directional angles of shear strength. In conclusion, we identified that mechanical strength was affected on the solder layer's fracture mode.

Thermal Characteristic Evaluation of Functionally Graded Composites for PSZ/Metal

  • Lim, Jae-Kyoo;Song, Jun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.298-305
    • /
    • 2000
  • The functionally graded material (FGM) is the new concept for a heat resisting material. FGM consists of ceramics on one side and metal on the other. A composition and microstructure of an intermediate layer change continuously from ceramics to metal at the micron level. This study is carried out to analyze the thermal shock characteristics of functionally graded PSZ/ metal composites. Heat-resistant property was evaluated by gas burner heating test using $C_2H_2/O_2$ combustion flame. The ceramic surface was heated with burner flame and the bottom surface cooled with water flow. Also, the composition profile and the thickness of the graded layer were varied to study the thermo mechanical response. Furthermore, this study carried out the thermal stress analysis to investigate the thermal characteristics by the finite element method. Acoustic emission (AE) monitoring was performed to detect the microfracture process in a thermal shock test.

  • PDF