DOI QR코드

DOI QR Code

Thermal Shock Fatigue Influence on Mechanical Property Behavior of PBT Resin Embedded by Glass Fibers and Thermal Conductive Particles

유리섬유와 열전도성 첨가제가 함유된 PBT 수지의 기계적 물성거동에 미치는 열충격피로의 영향

  • Received : 2013.12.04
  • Accepted : 2014.06.18
  • Published : 2014.06.30

Abstract

The purpose of this study is to improve the strength and thermal conductivity of polybutylene terephthalate (PBT) by embedding various additives. Specimens were prepared using PBT pellets embedded with glass fibers (GF) and boron nitride (BN) powders. The test results showed that tensile strength decreased, and thermal conductivity increased with increasing BN contents. with thermal shock cycles conducted, unfilled PBT showed a considerable decrease in failure strain and strength, whereas strength and thermal conductivity of glass fiber and BN particle-embedded PBT had little differeces. With increasing BN, the thermal conductivity of PBT composites was highly improved.

본 연구는 엔지니어링 플라스틱인 Polybutylene terephthalate(PBT)에 첨가물을 넣어 강도와 열전도성, 열충격내구성을 개선시키는 것을 목적으로 한다. 그에 따라 PBT에 유리섬유(Glass Fiber)와 Boron nitride(BN)을 복합적으로 첨가하여, 각각의 조성비에 따른 기계적 특성과 열전도 특성변화를 실험적으로 분석하였다. 시험 결과 BN의 함유량이 증가함에 따라 열전도도는 증가하였고, 기계적 강도는 작아졌다. 열충격싸이클을 가한 결과, 비충전 PBT는 파단 신장률이 작아졌으나 충전 PBT는 강도와 열전도율이 별다른 성질변화가 거의 없었다. BN의 첨가에 따라 PBT 복합재의 열전도도도는 크게 향상되었다.

Keywords

References

  1. Oh, S.Y., "PET/PBT of Characteristics and Technology Development Trend," Journal of the Korean Society for Polymer Science and Technology, Vol. 3. No. 2, April, 1992.
  2. Lu, X., Xu, G., Hofstra, P.G., and Bajcar, R.C., "Moisture-Absorption, Dielectric Relaxation, and Thermal Conductivity Studies of Polymer Composites," Journal of Polymer Science Part B: Polymer Physics, Vol. 36, 1998, pp. 2259-2265. https://doi.org/10.1002/(SICI)1099-0488(19980930)36:13<2259::AID-POLB2>3.0.CO;2-O
  3. Ng, H.Y., Lu, X., and Lau, S.K., "Thermal Conductivity, Electrical Resistivity, Mechanical, and Rheological Properties of Thermoplastic Composites Filled With Boron Nitride and Carbon Fiber," Polymer Composites, Vol. 26, 2005, pp. 66-73. https://doi.org/10.1002/pc.20076
  4. Alexandre, M., and Dubois, P., "Polymer-layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials," Materials Science & Engineering R-Reports, Vol. 28, No. 1-2, 2000, pp. 1-63. https://doi.org/10.1016/S0927-796X(00)00012-7
  5. Wilkinson, A.N., Tattum, S.B., and Ryan, A.J., "Melting, Reaction and Recrystallization in a Reactive PC-PBT Blend," Polymer, Vol. 38, No. 8, 1997, pp. 1923-1928. https://doi.org/10.1016/S0032-3861(96)00712-4
  6. http://accuratus.com/boron.html
  7. Utacki, L.A., "Commercial Polymer Blends", 1996, pp. 175-176.
  8. Binsack, R., Rempel, D., Humme, G., and Ott, K.-H., US Patent, No. 4, 1981, 292, 233.
  9. Binsack, R., Rempel, D., Lindner, C., and Morbitr, L., US Patent, No. 4, 1985, 535, 124.
  10. Wang, I., US Patent, No. 4, 1988, 753, 986.
  11. Crosby, J.M., "Recent Advances in Thermpplastic Composites", Advanced Materials & Processes, Vol. 133, No. 3, 1988, pp. 56-59.
  12. Muzzy, J.D., and Kays, A.O., "Thermoplastic vs Thermosetting Structurla Composites," Polymer Composites, Vol. 5, No. 3, 1984, pp. 169-172. https://doi.org/10.1002/pc.750050302
  13. Yang, J.S., Lee, K.-Y., Choi, Y.S., Choi, J.-C., Park, D.-H., and Park, D.-H., "Modulds and Fractural Side Measurement of Semiconductive Shied (Materials) in Power Cable Using the DMA," Journal of the Korean Institute of Electrical and Electronic Material Engineers, Vol. 6, 2005, pp. 213-214.
  14. Korean Standard, "Determination of Tensile Properties of Plastics," ks M 3006.
  15. Mil-Std-883 Method 1010.