DOI QR코드

DOI QR Code

Effect of Diamond Particle Size on the Thermal Shock Property of High Pressure High Temperature Sintered Polycrystalline Diamond Compact

초 고온·고압 소결 공정으로 제조된 다결정 다이아몬드 컴팩트의 열충격 특성에 미치는 다이아몬드 입자 크기의 영향

  • 김지원 (국립 안동대학교 신소재공학부) ;
  • 백민석 (국립 안동대학교 신소재공학부) ;
  • 박희섭 (일진다이아몬드(주)) ;
  • 조진현 (일진다이아몬드(주)) ;
  • 이기안 (국립 안동대학교 신소재공학부)
  • Received : 2016.08.28
  • Accepted : 2016.10.14
  • Published : 2016.10.28

Abstract

This study investigates the thermal shock property of a polycrystalline diamond compact (PDC) produced by a high-pressure, high-temperature (HPHT) sintering process. Three kinds of PDCs are manufactured by the HPHT sintering process using different particle sizes of the initial diamond powders: $8-16{\mu}m$ ($D50=4.3{\mu}m$), $10-20{\mu}m$ ($D50=6.92{\mu}m$), and $12-22{\mu}m$ ($D50=8.94{\mu}m$). The microstructure observation results for the manufactured PDCs reveal that elemental Co and W are present along the interface of the diamond particles. The fractions of Co and WC in the PDC increase as the initial particle size decreases. The manufactured PDCs are subjected to thermal shock tests at two temperatures of $780^{\circ}C$ and $830^{\circ}C$. The results reveal that the PDC with a smaller particle size of diamond easily produces microscale thermal cracks. This is mainly because of the abundant presence of Co and WC phases along the diamond interface and the easy formation of Co-based (CoO, $Co_3O_4$) and W-based ($WO_2$) oxides in the PDC using smaller diamond particles. The microstructural factors for controlling the thermal shock property of PDC material are also discussed.

Keywords

References

  1. H. D. Stromberg and D. R. Stephens: Am. Ceram. Soc. Bull., 49 (1990) 1030.
  2. H. Katman and W. F. Libby: Science, 172 (1971) 1132. https://doi.org/10.1126/science.172.3988.1132
  3. J. Hu, Y. K. Chou, R. G. Thompson, J. Burgess and S. Street: Surt. Coat. Technol., 202 (2007) 1113. https://doi.org/10.1016/j.surfcoat.2007.07.050
  4. F. Bellin, A. Dourfaye, W. King and M. Thigpen: World Oil, 231 (2010) 41.
  5. D. Belnap and A. Griffo: Dia. Rel. Mater., 13 (2004) 1914. https://doi.org/10.1016/j.diamond.2004.06.013
  6. D. E. Scott: Ind. Diamond Rev., 1 (2006) 48.
  7. D. Miess and G. Rai: Mater. Sci. Eng. A, 209 (1996) 270. https://doi.org/10.1016/0921-5093(95)10105-5
  8. D. Jianxin, Z. Hui, W. Ze. and L. Aihua: Int. J. Refract. Met. Hard Mater., 29 (2011) 631. https://doi.org/10.1016/j.ijrmhm.2011.04.011
  9. M. V. Sneddon and D. R. Hall: J. Petrol. Technol., 40 (1988) 1593. https://doi.org/10.2118/17006-PA
  10. J. W. Kim, H. S. Park, J. H. Cho and K. A. Lee: J. Korean Powder Metall. Inst., 22 (2015) 1. https://doi.org/10.4150/KPMI.2015.22.1.1
  11. J. W. Kim, M. S. Baek, H. S. Park J. H. Cho, B. G. Park and K. A. Lee: to be submitted.
  12. C. J. Kerr: J. Pet. Technol., 40 (1988) 327. https://doi.org/10.2118/14075-PA
  13. R. L. Mehan and L. E. Hibbs: J. Mater. Sci., 24 (1989) 942. https://doi.org/10.1007/BF01148782
  14. D. A. Glowka: Sandia National Laboratories (Master thesis).
  15. X. Q. You, T. Z. Si, N. Liu, P. P. Ren, Y. D. Xu and J. P. Feng: Ceram. Inter., 31 (2005) 33. https://doi.org/10.1016/j.ceramint.2004.02.009
  16. D. Che, P. Han, P. Guo and K. Ehmann: J. Manuf. Sci. Eng., 134 (2012) 1.
  17. S. N. Basu and V. K. Sarin: Mater. Sci. Eng. A, 209 (1996) 206. https://doi.org/10.1016/0921-5093(95)10145-4
  18. J. X. Deng, Y. S. Li and W. L Song: Wear, 265 (2008) 1776. https://doi.org/10.1016/j.wear.2008.04.024
  19. C. A. Ribeiro, W. R. de Souza, M. S. Crespi, J. A. Gomes Neto and F. L. Fertonani a: J. Therm. Anal. Cal., 90 (2007) 801. https://doi.org/10.1007/s10973-006-8036-x