• Title/Summary/Keyword: Thermal reduction

Search Result 1,658, Processing Time 0.024 seconds

Influence of Thermal Conductivity on the Thermal Behavior of Intermediate-Temperature Solid Oxide Fuel Cells

  • Aman, Nurul Ashikin Mohd Nazrul;Muchtar, Andanastuti;Rosli, Masli Irwan;Baharuddin, Nurul Akidah;Somalu, Mahendra Rao;Kalib, Noor Shieela
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.132-139
    • /
    • 2020
  • Solid oxide fuel cells (SOFCs) are among one of the promising technologies for efficient and clean energy. SOFCs offer several advantages over other types of fuel cells under relatively high temperatures (600℃ to 800℃). However, the thermal behavior of SOFC stacks at high operating temperatures is a serious issue in SOFC development because it can be associated with detrimental thermal stresses on the life span of the stacks. The thermal behavior of SOFC stacks can be influenced by operating or material properties. Therefore, this work aims to investigate the effects of the thermal conductivity of each component (anode, cathode, and electrolyte) on the thermal behavior of samarium-doped ceria-based SOFCs at intermediate temperatures. Computational fluid dynamics is used to simulate SOFC operation at 600℃. The temperature distributions and gradients of a single cell at 0.7 V under different thermal conductivity values are analyzed and discussed to determine their relationship. Simulations reveal that the influence of thermal conductivity is more remarkable for the anode and electrolyte than for the cathode. Increasing the thermal conductivity of the anode by 50% results in a 23% drop in the maximum thermal gradients. The results for the electrolyte are subtle, with a ~67% reduction in thermal conductivity that only results in an 8% reduction in the maximum temperature gradient. The effect of thermal conductivity on temperature gradient is important because it can be used to predict thermal stress generation.

Investigation and Analysis of Patents for the Thermal Bridge Breaker in Green Buildings (그린건축을 위한 열교차단 특허기술의 조사 및 분석 연구)

  • Kim, Young-Ho;Kim, Hyung-Joon;Lee, Hee-Young
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.13 no.2
    • /
    • pp.35-43
    • /
    • 2013
  • The green building is one of biggest factors to go the goal of energy saving and environmental conservation, "reduction of energy consumption, friendly energy technology, recycling of resource, and environmental pollution reduction technology. The purpose of these green buildings realized by the energy-saving technology such as the thermal bridge breaker(or thermal bridge block). Thermal bridges are localized elements that penetrate insulated portions of building envelope that results in heat loss. The purpose of this paper is to describe the technical interactions for patents of a thermal bridge breaker(TTB) used in green building practices, and be subject to investigation to TTB in the leading countries, that is, United State, Europe Union, Japan, and Korea. As a result, there are four TTB categories(roof, wall-slab connection, opening, footing) in house or building. The TTB categories is remarkable technology that is apparatus in slab-wall joints and sealing element of opening frame in walls.

Study on volume reduction of radioactive perlite thermal insulation waste by heat treatment with potassium carbonate

  • Chou, Yi-Sin;Singh, Bhupendra;Chen, Yong-Song;Yen, Shi-Chern
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.220-225
    • /
    • 2022
  • Perlite is one of the major constituents of the radioactive thermal insulation waste (RTIW) originating from nuclear power plants and, for proper waste management, a significant reduction in its volume is required prior to disposal. In this work, the volume reduction of perlite is studied by high-temperature treatment method with using K2CO3 as a flux. The perlite is ground with 0-30 wt% K2CO3, and differential thermal analysis/thermogravimetric analysis is used to monitor the glass transition temperature (Tg) and weight loss. The Tg varied between ~772.2 and 837.1 ℃ with the minima at ~643.5 ℃ with the addition of ~10 wt% K2CO3. It is observed that compared to the pure perlite the volume reduction ratio (VRR) increases with the addition of K2CO3. The VRR of 11.20 is observed with 5 wt% K2CO3 at 700 ℃, as compared to VRR of 5.56 without K2CO3 at 700 ℃. The X-ray photoelectron spectroscopy and scanning electron microscopy are used to characterize perlite samples heat-treated without/with 5 wt% K2CO3 at 700 ℃. Moreover, the atomic absorption spectroscopy indicates that the proposed heat-treatment procedure is able to completely retain the radionuclides present in the perlite RTIW.

The Effect of Gasket Shape and Material Properties on Heat Losses in a Refrigerator (냉장고 가스켓 주위 형상 및 물성치 변화에 의한 열손실 영향 연구)

  • Ha, Ji-Soo;Jung, Kwang-Soo;Kim, Tae-Kwon;Shim, Jae-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.413-418
    • /
    • 2010
  • The amount of heat loss of a refrigerator through the gasket is nearly 30% of total refrigerator heat loss. In this paper, quantitative evaluation for the effects of various effort to reduce heat losses through the gasket. The first trial is to extend the inner gasket to prevent the heat loss flowing from the inner of refrigerator. The effects of thermal conductivity changes of gasket and magnet are investigated by the numerical heat transfer analysis. The position change of hot line is also examined in the present research. From the present result of the numerical simulation of heat transfer, we are able to reduce the heat loss about 20~40% by using inner gasket extension. The reducing of thermal conductivity of gasket is considerable in the heat loss reduction. On the other hand, the thermal conductivity change of magnet has no apparent effect in heat loss reduction. The position change of hot line has considerable positive effect in the reduction of heat loss near gasket region.

NOx Formation and Flame Structure in $CH_4/Air-CO_2$ Counterflow Diffusion Flames ($CH_4/Air-CO_2$ 대향류 확산화염의 NOx 생성 특성 및 화염구조)

  • Han, J.W.;Lee, S.R.;Lee, C.E.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.949-955
    • /
    • 2000
  • Numerical study with detailed chemistry has been conducted to investigate the NOx formation and structure in $CH_4/Air-CO_2$ counterflow diffusion flames. The importance of radiation effect is identified and the role of $CO_2$ addition is addressed to thermal and chemical reaction effects, which can be precisely specified through the introduction of an imaginary species. Also NO separation technique is utilized to distinguish the contribution of thermal and prompt NO formation mechanisms. The results are as follows : The radiation effect is dominant at low strain rates and it is intensified by $CO_2$ addition. Thermal effect mainly contributes to the changes in flame structure and the amount of NO formation but the chemical reaction effect also cannot be neglected. It is noted that flame structure is changed considerably due to the addition of $CO_2$ in such a manner that the path of methane oxidation prefers to take $CH_4 {\rightarrow}CH_3{\rightarrow}C_2H_6{\rightarrow}C_2H_5$ instead of $CH_4 {\rightarrow}CH_3{\rightarrow}CH_2{\rightarrow}CH$. At low strain rate(a=10) the reduction of thermal NO is dominant with respect to reduction rate, but that of prompt NO is dominant with respect to total amount.

  • PDF

Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle using CeO2/ZrO2 Foam Device (CeO2/ZrO2 Foam Device를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Lee, Jin-Gyu;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.11-18
    • /
    • 2014
  • Two-step water splitting thermochemical cycle with $CeO_2$ foam device was investigated by using a solar simulator composed of 2.5 kW Xe-Arc lamp and mirror reflector. The hydrogen production of $CeO_2$ foam device depending on reaction temperature of Thermal-Reduction step and Water-Decomposition step was analyzed, and the hydrogen production of $CeO_2$ and $NiFe_2O_4/ZrO_2$ foam devices was compared. As a result, the amount of reduced $CeO_2$ considerably varies according to the reaction temperature of Thermal-Reduction step. and hydrogen production was not much when the amount of reduced $CeO_2$ decreased even if the reaction temperature of Water-Decomposition step was high. Therefore, it is very important to keep the reaction temperature of Thermal-Reduction step high in two-step thermochemical cycle with $CeO_2$.

Analysis of Thermal Insulation Performance Based on Material Combinations for Carbon Reduction Insulating Concrete (탄소저감을 위한 단열콘크리트 재료 조합에 따른 단열성능 분석)

  • Himan Lee;Jaekyung Lee
    • Land and Housing Review
    • /
    • v.15 no.3
    • /
    • pp.189-198
    • /
    • 2024
  • This study analyzes the thermal performance of insulating concrete based on material combinations aimed at carbon reduction. The study compares the thermal and structural properties of insulating concrete enhanced with perlite and EPS (Expanded Polystyrene) beads to conventional concrete, with a focus on the impact of insulation properties on thermal conductivity. The results indicate that the content of EPS beads is critical to the insulating performance, and increased moisture absorption significantly reduces the energy efficiency of the insulating concrete. These findings provide valuable insights for the design and application of insulating concrete to enhance energy efficiency and reduce carbon emissions. This study offers guidance for further developing insulating concrete as a carbon-reducing building material.

Study on Designing and Installation Effect of Fresh Air Load Reduction by using Underground Double Floor Space-Experimental Result and Proposal of Numerical Model for Thermal Performance- (지열을 이용한 공조외기부하저감(空調外氣負荷低減)시스템의 설계 및 도입 효과에 관한 연구 -실측결과 및 열성능 예측을 위한 수치모델의 제안-)

  • Son, Won-Tug;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.3
    • /
    • pp.233-240
    • /
    • 2004
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space The system was introduced into a real building and was examined by the field measurement Judging from the measurements during three years(1999~2001), the state of the system operation was very stable through this period and it was clear that the system contributes to reduction of energy consumption for air-conditioning. Futhermore, a simulation model used the simple heat diffusion equation Was developed to simulate its thermal characteristics and performances The simulations resulted m air temperature in good agreement with the measurements. Also, from the result of numerical analysis, It is clear that the amount of heat supply by using this system is more than the amount of energy loss to the room above it. Therefore, it is concluded that this systems is very useful and the proposed numerical model can be used for the prediction of system thermal performance.

  • PDF

Computational Methodology for Biodynamics of Proteins (단백질의 동적특성해석을 위한 전산해석기법 연구)

  • Ahn, Jeong-Hee;Jang, Hyo-Seon;Eom, Kil-Ho;Na, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.476-479
    • /
    • 2008
  • Understanding the dynamics of proteins is essential to gain insight into biological functions of proteins. The protein dynamics is delineated by conformational fluctuation (i.e. thermal vibration), and thus, thermal vibration of proteins has to be understood. In this paper, a simple mechanical model was considered for understanding protein's dynamics. Specifically, a mechanical vibration model was developed for understanding the large protein dynamics related to biological functions. The mechanical model for large proteins was constructed based on simple elastic model (i.e. Tirion's elastic model) and model reduction methods (dynamic model condensation). The large protein structure was described by minimal degrees of freedom on the basis of model reduction method that allows one to transform the refined structure into the coarse-grained structure. In this model, it is shown that a simple reduced model is able to reproduce the thermal fluctuation behavior of proteins qualitatively comparable to original molecular model. Moreover, the protein's dynamic behavior such as collective dynamics is well depicted by a simple reduced mechanical model. This sheds light on that the model reduction may provide the information about large protein dynamics, and consequently, the biological functions of large proteins.

  • PDF

Drying methods for municipal solid waste quality improvement in the developed and developing countries: A review

  • Tun, Maw Maw;Juchelkova, Dagmar
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.529-542
    • /
    • 2019
  • Nowadays, drying methods for municipal solid waste quality improvement have been adopted in the developed and developing countries to valorize wastes for a renewable energy source, reduce dependency on fossil fuel and keep safer disposal at landfills. Among them, biodrying, biostabilization, thermal drying and solar drying are the most common. Drying of municipal solid waste could offer several environmental and economic benefits. Therefore, this review highlighted the drying methods for municipal solid waste quality improvement around the world and compared them based on the reduction of moisture, weight and volume of municipal solid wastes against drying temperature and time by using statistical analysis. It was observed that the drying temperature of different drying methods accounted for 115 ± 40℃ for thermal drying, 59 ± 37℃ for solar drying, 55 ± 15℃ for biodrying and 58 ± 11℃ for biostabilization. Among the drying methods, thermal drying provided the shortest drying time. The moisture reduction, weight reduction, volume reduction and heating value increase of municipal solid waste could vary with drying temperature and time. Finally, the benefits and drawbacks of different drying methods were specified, and recommendations were made for the future efficient drying.