DOI QR코드

DOI QR Code

Influence of Thermal Conductivity on the Thermal Behavior of Intermediate-Temperature Solid Oxide Fuel Cells

  • Received : 2019.05.30
  • Accepted : 2019.10.14
  • Published : 2020.05.31

Abstract

Solid oxide fuel cells (SOFCs) are among one of the promising technologies for efficient and clean energy. SOFCs offer several advantages over other types of fuel cells under relatively high temperatures (600℃ to 800℃). However, the thermal behavior of SOFC stacks at high operating temperatures is a serious issue in SOFC development because it can be associated with detrimental thermal stresses on the life span of the stacks. The thermal behavior of SOFC stacks can be influenced by operating or material properties. Therefore, this work aims to investigate the effects of the thermal conductivity of each component (anode, cathode, and electrolyte) on the thermal behavior of samarium-doped ceria-based SOFCs at intermediate temperatures. Computational fluid dynamics is used to simulate SOFC operation at 600℃. The temperature distributions and gradients of a single cell at 0.7 V under different thermal conductivity values are analyzed and discussed to determine their relationship. Simulations reveal that the influence of thermal conductivity is more remarkable for the anode and electrolyte than for the cathode. Increasing the thermal conductivity of the anode by 50% results in a 23% drop in the maximum thermal gradients. The results for the electrolyte are subtle, with a ~67% reduction in thermal conductivity that only results in an 8% reduction in the maximum temperature gradient. The effect of thermal conductivity on temperature gradient is important because it can be used to predict thermal stress generation.

Keywords

References

  1. M. Anwar, A. Muchtar, and M. R. Somalu, Int. J. Appl. Eng. Res., 2016, 11(19), 973-4562.
  2. Z. Gao, L. V. Mogni, E. C. Miller, J. G. Railsback, and S. A. Barnett, Energy Environ. Sci., 2016, 9(5),1602-1644. https://doi.org/10.1039/C5EE03858H
  3. L. S. Mahmud, A. Muchtar, and M. R. Somalu, Renew. Sustain. Energy Rev., 2017, 72, 105-116. https://doi.org/10.1016/j.rser.2017.01.019
  4. S. A. Muhammed Ali, M. Anwar, N. F. Raduwan, A. Muchtar, and M. R. Somalu, J. Sol-Gel Sci. Technol., 2018, 86(2), 1-12. https://doi.org/10.1007/s10971-018-4615-0
  5. N. A. Baharuddin, A. Muchtar, and D. Panuh, J. Kejuruter., 2018, SI 1(2), 1-8.
  6. M. Peksen, Prog. Energy Combust. Sci., 2015, 48, 1-20. https://doi.org/10.1016/j.pecs.2014.12.001
  7. N. Mahato, S. Sharma, A. K. Keshri, A. Simpson, A. Agarwal, and K. Balani, J. Mater. Met. Mater. Soc., 2013, 65(6), 749-762. https://doi.org/10.1007/s11837-013-0601-8
  8. N. S. Kalib, A. Muchtar, M. R. Somalu, A. K. A. Mohd Ihsan, and N. A. Mohd Nazrul Aman, J. Adv. Res. Fluid Mech. Therm. Sci., 2018, 50(2), 146-152.
  9. T. Choudhary and Sanjay, Int. J. Hydrogen Energy, 2016, 41(24), 10212-10227. https://doi.org/10.1016/j.ijhydene.2016.04.016
  10. M. Xu, T. Li, M. Yang, and M. Andersson, Sci. Bull., 2016, 61(17), 1333-1344. https://doi.org/10.1007/s11434-016-1146-3
  11. E. Guk, J. S. Kim, M. Ranaweera, V. Venkatesan, and L. Jackson, Appl. Energy, 2018, 230, 551-562. https://doi.org/10.1016/j.apenergy.2018.08.120
  12. M. Andersson, J. Yuan, and B. Sunden, Int. J. Heat Mass Transf., 2012, 55(4), 773-788. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.032
  13. G. Yang, D. Yue, H. Li, and X. Lv, International Conference on Advances in Energy Engineering, ICAEE 2010, 2010,(2), 325-328.
  14. A. Yahya, R. Rabhi, H. Dhahri, and K. Slimi, Powder Technol., 2018, 338, 402-415. https://doi.org/10.1016/j.powtec.2018.07.060
  15. C. Yang, J. G. Cheng, H. G. He, and J. F. Gao, Key Eng. Mater., 2010, 434-435(3), 731-734. https://doi.org/10.4028/www.scientific.net/KEM.434-435.731
  16. S. A. Muhammed Ali, A. Muchtar, A. Bakar Sulong, N. Muhamad, and E. Herianto Majlan, Ceram. Int., 2013, 39(5), 5813-5820. https://doi.org/10.1016/j.ceramint.2013.01.002
  17. D. Cui, Q. Liu, and F. Chen, J. Power Sources, 2010, 195(13), 4160-4167. https://doi.org/10.1016/j.jpowsour.2010.01.013
  18. D. Saebea, S. Authayanun, Y. Patcharavorachot, and A. Arpornwichanop, Chem. Eng. Trans., 2016, 52, 223-228.
  19. P. Aguiar, C. S. Adjiman, and N. P. Brandon, J. Power Sources, 2004, 138(1-2), 138, 120-136. https://doi.org/10.1016/j.jpowsour.2004.06.040
  20. P. A. Ramakrishna, S. Yang, and C. H. Sohn, J. Power Sources, 2006, 158(1), 378-384. https://doi.org/10.1016/j.jpowsour.2005.10.030
  21. M. Navasa, J. Yuan, and B. Sunden, Appl. Energy, 2015, 137, 867-876. https://doi.org/10.1016/j.apenergy.2014.04.104
  22. T. Suther, A. Fung, M. Koksal, and F. Zabihian, Sustainability, 2010, 2(11), 3549-3560. https://doi.org/10.3390/su2113549
  23. C. L. Wan, W. Pan, Z. X. Qu, and Y. X. Qin, Key Eng. Mater., 2007, 336-338, 1773-1775. https://doi.org/10.4028/www.scientific.net/KEM.336-338.1773
  24. Y.-C. Shin, S. Hashimoto, K. Yashiro, K. Amezawa, and T. Kawada, ECS Trans., 2016, 72(7), 105-110. https://doi.org/10.1149/07207.0105ecst
  25. K. Yuan, Y. Ji, and J. N. Chung, J. Power Sources, 2009, 194(2), 908-919. https://doi.org/10.1016/j.jpowsour.2009.05.045
  26. A. Amiri et al., Int. J. Hydrogen Energy, 2016, 41(4), 2919-2930. https://doi.org/10.1016/j.ijhydene.2015.12.076
  27. J. B. Robinson et al., J. Power Sources, 2015, 288, 473-481. https://doi.org/10.1016/j.jpowsour.2015.04.104
  28. A. A. Kulikovsky, Int. J. Hydrogen Energy, 2010, 35(1), 308-312. https://doi.org/10.1016/j.ijhydene.2009.10.066