• Title/Summary/Keyword: Thermal plume flow

Search Result 47, Processing Time 0.031 seconds

A Study on the model of Thermal Plume Flow in the Forest Fire (산불에 의한 열적상승유동 해석에 관한 연구)

  • Ji, Young-Moo;Park, Jung-Sang
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.358-361
    • /
    • 2008
  • A study is made of thermal plume flow model for the development of helicopter simulator over the forest fire. For numerical analysis, the Boussinesq fluid approximation and line fire model, which is assumed by the shape of forest fire spreading, are adopted. Comparing 3-D full numerical solutions with 2-D similarity solution, it has been built a new model that is capable of temperature prediction along the symmetric vertical axis in both cases of laminar and turbulent flows.

  • PDF

The Influence of Groundwater Flow on the Performance of an Aquifer Thermal Energy Storage (ATES) System (지하수류가 대수층 열저장 시스템의 성능에 미치는 영향(3))

  • Hahn, Jeongsang;Lee, Juhyun;Kiem, Youngseek;Lee, Kwangjin;Hong, Kyungsik
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.4
    • /
    • pp.9-26
    • /
    • 2017
  • When a warm well located downgradient is captured by cold thermal plume originated from an upgradient cold well, the warm thermal plume is pushed further downgradient in the direction of groundwater flow. If groundwater flow direction is parallel to an aquifer thermal energy storage (ATES), the warm well can no longer be utilized as a heat source during the winter season because of the reduced heat capacity of the warm groundwater. It has been found that when the specific discharge is increased by $1{\times}10^{-7}m/s$ in this situation, the performance of ATES is decreased by approximately 2.9% in the warm thermal plume, and approximately 6.5% in the cold thermal plume. An increase of the specific discharge in a permeable hydrogeothermal system with a relatively large hydraulic gradient creates serious thermal interferences between warm and cold thermal plumes. Therefore, an area comprising a permeable aquifer system with large hydraulic gradient should not be used for ATES site. In case of ATES located perpendicular to groundwater flow, when the specific discharge is increased by $1{\times}10^{-7}m/s$ in the warm thermal plume, the performance of ATES is decreased by about 2.5%. This is 13.8% less reduced performance than the parallel case, indicating that an increase of groundwater flow tends to decrease the thermal interference between cold and warm wells. The system performance of ATES that is perpendicular to groundwater flow is much better than that of parallel ATES.

A Study on the Model of Thermal Plume Flow in the Forest Fire (산불에 의한 열적상승유동 해석에 관한 연구)

  • Park, Jun-Sang;Ji, Young-Moo;Jun, Hyang-Sig;Jeon, Dae-Keun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.1
    • /
    • pp.7-15
    • /
    • 2009
  • A study is made of thermal plume flow model for the development of helicopter simulator over the forest fire. For the numerical analysis, a line fire model with Boussinesq fluid approximation, which is idealized by the spreading shape of forest fire on the ground, is adopted. Comparing full 2-D and 3-D numerical solutions with 2-D similarity solution, it has been built a new model that is useful for temperature prediction along the symmetric vertical axis of fire model for both cases of laminar and turbulent flow.

Numerical Study of Rocket Exhaust Plume with Equilibrium Chemical Reaction and Thermal Radiation (평형화학반응과 복사열전달을 고려한 로켓 플룸 유동 해석)

  • Shin J.-R.;Choi J.-Y.;Choi H.-S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.146-153
    • /
    • 2004
  • The Numerical study has been carried out to investigate the effects of chemical reaction and thermal radiation on the rocket plume flow-field at various altitudes. The theoretical formulation is based on the Navier-Stokes equations for compressible flows along with the infinitely fast chemistry and thermal radiation. The governing equations were solved by a finite volume fully-implicit TVD(Total Variation Diminishing) code which uses Roe's approximate Riemann solver and MUSCL(Monotone Upstream-centered Schemes for Conservation Laws) scheme. LU-SGS (Lower Upper Symmetric Gauss Seidel) method is used for the implicit solution strategy. An equilibrium chemistry module for hydrocarbon mixture with detailed thermo-chemical properties and a thermal radiation module for optically thin media were incorporated with the fluid dynamics code. In this study, kerosene-fueled rocket was assumed operating at O/F ratio of 2.34 with a nozzle expansion ratio of 6.14. Flight conditions considered were Mach number zero at ground level, Mach number 1.16 at altitude 5.06km and Mach number 2.9 at altitude 17.34km. Numerical results gave the understandings on the detailed plume structures at different altitude conditions. The diffusive effect of the thermal radiation on temperature field and the effect of chemical recombination during the expansion process could be also understood. By comparing the results from frozen flow and infinitely fast chemistry assumptions, the excess temperature of the exhaust gas resulting from the chemical recombination seems to be significant and cannot be neglected in the view point of performance, thermal protection and flow physics.

  • PDF

Numerical Prediction of the Base Heating due to Rocket Engine Clustering (로켓엔진 병렬화에 의한 저부가열의 수치적 예측)

  • Kim Seong Lyong;Kim Insun
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.18-25
    • /
    • 2004
  • Multi plume effects on the base heating have been Investigated with a CFD program. As the flight altitude increases, the plume expansion angle increases regardless of the single or clustered engine. The plume interaction of the clustered engine makes a high temperature thermal shear in the center of four plumes. At low altitude, the high temperature shear flow stays in the center of plumes, but it increases up to engine base with the increasing altitude. At high altitude, the flow from plume to base and the flow from base into outer free stream are supersonic, which transfers the high heat in the center of plumes to the base region. The radiative heat of the clustered engine varies from 220 kW/m² to 469 kW/m² with increasing altitude while those of the single engine are 10 kW/m² and 43.7 kW/m². And the base temperature of the clustered engine varies from 985K to 1223K, and those of the single engine are 483K and 726K. This big radiative heat of clustered engine can be explained by the active high temperature base flow and strong plume interactions.

Numerical Analysis of Rocket Exhaust Plume with Equilibrium Chemistry and Thermal Radiation (화학 평형과 열복사를 포함한 로켓 플룸 유동 해석)

  • Shin Jae-Ryul;Choi Jeong-Yeol;Choi Hwan-Seck
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.35-45
    • /
    • 2005
  • Numerical study is carried out to investigate the effects of chemistry and thermal radiation on the rocket plume flow field at various altitudes. Navier-Stokes equations for compressible flows were solved by a fully-implicit TVD code based on the finite volume method. An infinitely fast chemistry module for hydrocarbon mixture with detailed thermo-chemical properties and a thermal radiation module for optically thick media were incorporated with the fluid dynamics code. The plume flow fields of a kerosene-fueled rocket flying at Mach number zero at sea-level, 1.16 at altitude of 5.06 km and 2.90 at 17.34 km were numerically analyzed. Results showed the plume structures at different altitude conditions with the effects of chemistry and radiation. It is understood that the excess temperature by the chemical reactions in the exhaust gas may not be ignored in the view point of propulsion performance and thermal protection of the rocket base, especially at higher altitude conditions.

A Study on the Bubble Flow in the Gas-Liquid Plume (기-액 기둥에서 기포유동에 관한 연구)

  • Seo, Dong-Pyo;Hong, Myung-Seok;Oh, Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2105-2108
    • /
    • 2003
  • The characteristics of upward bubble flow were experimentally investigated in a liquid bath. In the present study, a thermal-infrared camera and high speed CCO camera were used to measure their temperature and local rising velocity, respectively. Heat transfer from bubble surface to water is largely completed within z=10mm from the nozzle, and then the temperature of bubble surface reaches that of water rapidly. The rising velocity of bubble was calculated for two different experimental conditions: 1) bubble flow without kinetic energy 2) with kinetic energy. Bubble flow without kinetic energy starts to undergo the effect of inertia force 10cm away from the nozzle. Whereas, kinetic energy is dominant before 30 cm away from the nozzle in bubble flow, but after this point, kinetic energy and inertial force are applied on bubble flow at the same time.

  • PDF

Hydro-thermal Numerical Simulation for an Artificial Recharge Test in a Fractured Rock Aquifer (암반대수층 지하수 인공함양 시험에 대한 열-수리 모델링)

  • Park, Daehee;Koo, Min-Ho;Kim, Yongcheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.65-75
    • /
    • 2015
  • An artificial recharge test aimed at investigating transport characteristics of the injected water plume in a fractured rock aquifer was conducted. The test used an injection well for injecting tap water whose temperature and electrical conductivity were different from the groundwater. Temporal and depth-wise variation of temperature and electrical conductivity was monitored in both the injection well and a nearby observation well. A highly permeable fracture zone acting as the major pathway of groundwater flow was distinctively revealed in the monitoring data. A finite element subsurface flow and transport simulator (FEFLOW) was used to investigate sensitivity of the transport process to associated aquifer parameters. Simulated results showed that aperture thickness of the fracture and the hydraulic gradient of groundwater highly affected spatio-temporal variation of temperature and electrical conductivity of the injected water plume. The study suggests that artificial recharge of colder water in a fractured rock aquifer could create a thermal plume persistent over a long period of time depending on hydro-thermal properties of the aquifer as well as the amount of injected water.

Asymmetric Thermal-Mixing Analysis due to Partial Loop Stagnation during Design Basis Accident (원전 설계기준 사고시 냉각재계통 부분정체로 인한 비대칭 열유동 혼합해석)

  • Hwang K. M.;Jin T E.;Kim K. H.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.51-54
    • /
    • 2002
  • When a cold HPSI (High Pressure Safety Injection) fluid associated with an design basis accident, such as LOCA (Loss of Coolant Accident), enters the cold legs of a stagnated primary coolant loop, thermal stratification phenomena will arise due to incomplete mixing. If the stratified flow enters a reactor pressure vessel downcomer, severe thermal stresses are created in a radiation embrittled vessel wall by local overcooling. Previous thermal-mixing analyses have assumed that the thermal stratification phenomena generated in stagnated loop of a partially stagnated coolant loop are neutralized in the vessel downcomer by strong flow from unstagnated loop. On the basis of these reasons, this paper presents the thermal-mixing analysis results in order to identify the fact that the cold plume generated in the vessel downcomer due to the thermal stratification phenomena of the stagnated loop is affected by the strong flow of the unstagnated loop.

  • PDF

An Influence of Groundwater Flow on Performance of Closed Borehole Heat Exchangers (Part-2) (지하수류가 밀폐형 천공 지중 열교환기 성능에 미치는 영향(2))

  • Hahn, Jeongsang;Kiem, Youngseek;Lee, Juhyun;Lee, Byoungho;Hahn, Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.114-127
    • /
    • 2016
  • An increase of groundwater flux in BHE system creates that ground temperature (locT) becomes lower in summer and higher in winter time. In other words, it improves significantly the performance of BHE system. The size of thermal plume made up by advection driven-flow under the balanced energy load is relatively small in contrast to the unbalanced energy load where groundwater flow causes considerable change in the size of thermal plume as well ground temperature. The ground temperatures of the up gradient and down gradient BHEs under conduction only heat transport are same due to no groundwater flow. But a significant difference of the ground temperature is observed between the down gradient and up gradient BHE as a result of groundwater flow-driven thermal interference took placed in BHE field. As many BHEs are designed under the obscure assumption of negligible groundwater flow, failure to account for advection can cause inefficiencies in system design and operation. Therefore including groundwater flow in the design procedure is considered to be essential for thermal and economic sustain ability of the BHE system.