• Title/Summary/Keyword: Thermal phase transition

Search Result 250, Processing Time 0.025 seconds

LiLa1-xNdx(MoO4)2 Single Crystal Growth by the Czochralski Method (쵸크랄스키법에 의한 LiLa1-xNdx(MoO4)2 단결정 육성 연구)

  • Bae In-Kook;Chae Soo-Chun;Jang Young-Nam;Kim Sang-Bae
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.677-683
    • /
    • 2004
  • Nd:LLM (Nd:LiLa(MoO$_4$)$_2$) single crystals for the laser host material were grown by the Czochralski method. The Nd:LLM grown single crystals cracked easily, and the reasons of cracks are generally related with phase transition, incongruent melting, chemical heterogeneity of composition, geometric thermal structures of imbalance and growth direction. We confirmed that phase transition is not observed by TG-DTA thermal analysis, and the XRD analysis revealed congruent melting in our products. It was confirmed that the volatilization of Li$_2$O composition is the important reason of chemical heterogeneity. The geometric thermal profile of the resistance furnace of our own design was controlled with a crucible height. Also, Nd:LLM crystal affected growth direction, and was the best quality in case of (101) growth direction. The distribution and effective distribution coefficient of Nd$^{3+}$ ion were accomplished by PIXE analysis.s.

Preparation and Evaluation of Temperature Sensitive Liposomes Containing Adriamycin and Cytarabine

  • Kim, Chong-Kook;Lee, Suk-Kyeong;Lee, Beom-Jin
    • Archives of Pharmacal Research
    • /
    • v.16 no.2
    • /
    • pp.129-133
    • /
    • 1993
  • Temperature sensitive liposomes(TSL) containing adriamycin (ADM) and cytarabine (Ara-C) were prepared. ADM and Ara-C were selected as model compounds of amphiphilic and hydrophilic drug, respectively. Encapsulation efficiency of ADM entrapped into TSL was about twice greater than that of Ara-C. It might be due to different polarity of the drug, Lipid compositions of TSL had no effect on the encapsulation efficiency of drugs. Thermal behavior of TSL using a differential scanning calorimetry (DSC) was also investigated. Phase transition of TSL using a differential scanning calorimetry (DSC) was also investigated. Phase transition temperature $(T_c)$ of TSL was dependent on the lipid compositions of TSL ADM broadened thermogram of TSL but Ara-C did not. However, $T_c$ of TSL was not changed by any drug. Release rate of drugs was highly dependent on temperature. The release profile of ADM was similar to that of Ara-C. The maximum release rate of drugs from TSL was occurred at the near $T_c$ and observed at $39-41^\circ{C}$ for DPPC (Dipalmitoylphosphatidylcholine) only, $52-54^\circ{C}$ for DPPC and DSPC (1:1), respectively. Effect of human serum alburmin (HAA) on the release rate of ADM was investigated. HSA had no significant effect on the release of ADM below $T_c$. However, ADM release from TSL was increased at the near and above $T_c$. The HSA-induced leakage of drug may result from the interaction of liposomal constituents with HSA structure at the near TEX>$4^\circ{C}$. From the fact that the release profiles of ADM from freshly prepared TSL and stored TSL for 1 week at TEX>$4^\circ{C}$ was not changed, the TSL was considered to be stable for at least 1 week at TEX>$4^\circ{C}$. Based on these findings, TSL may be useful to deliver drugs to preheated target sites due to its thermal behaviors.

  • PDF

Thermoelectric Properties of p- type FeSi2 Processed by Mechanical Alloying and Plasma Thermal Spraying (기계적 합금화 p-type FeSi2의 플라즈마 용사 성형 및 열전 특성)

  • Choi Mun-Gwan;Ur Soon-Chul;Kim IL-Ho
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.218-223
    • /
    • 2004
  • P-type $\beta$-FeSi$_2$ with a nominal composition of $Fe_{0.92}Mn_{0.08}Si_2$ powders has been produced by mechanical alloying process. As-milled powders were spray dried and consolidated by atmospheric plasma thermal spraying as a rapid sintering process. As-milled powders were of metastable state and fully transformed to $\beta$-$FeSi_2$ phase by subsequent isothermal annealing. However, as-thermal sprayed $Fe_{0.92}Mn_{0.08}Si_2$ consisted of untransformed mixture of $\alpha$-$Fe_2Si_{5}$ and $\varepsilon$-FeSi phases. Isothermal annealing has been carried out to induce transformation to the thermoelectric semiconducting $\beta$-$FeSi_2$ phase. Isothermal annealing at $845^{\circ}C$ in vacuum gradually led to the thermoelectric semiconducting $\beta$-$FeSi_2$ phase transformation, but some residual metallic $\alpha$ and $\varepsilon$ phases were unavoidable even after prolonged annealing. Thermoelectric properties of $\beta$-$FeSi_2$ materials before and after isothermal annealing were evaluated. Seebeck coefficient increased and electric conductivity decreased with increasing annealing time due to the phase transition from metallic phases to semiconducting phases. Thermoelectric properties showed gradual increment, but overall properties appeared to be inferior to those of vacuum hot pressed specimens.

A Numerical Study on a Prediction of Performance of the Metal Hydride Thermal Conversion System through the Propagation Phenomena of Superadiabatic Thermal Waves (초단열 열파동의 전파현상을 활용하는 수소저장합금 열변환 시스템의 성능예측을 위한 수치해석적 연구)

  • Kim, Gyu-Jeong;Kim, Gwan-Yeong;Chae, Jae-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.572-582
    • /
    • 2001
  • A method of metal-hydride thermal conversion that is an alternative to the traditional method is proposed and investigated. The unit heat pump consists of reactors of two different metal-hydrides are distributed inside parallel channels filled with porous media. The channels are blown through with a heat-transfer agent. Thermal conversion develops as a set of successive heat waves. By a numerical-modeling method it is shown that the maximum thermal effect is attained in synchronous motion of the heat wave and the heat source (or sink) that accompanies the phase transition in the succession of unit metal-hydride pumps. The results are presented in a form convenient for prediction of the thermal and energy efficiency of the proposed thermal-conversion method in real devices.

Heat Treatment Effects on the Phase Evolutions of Partially Stabilized Grade Zirconia Plasma Sprayed Coatings

  • Park, Han-Shin;Kim, Hyung-Jun;Lee, Chang-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.486-493
    • /
    • 2001
  • Partially stabilized zirconia (PSZ) is an attractive material for thermal barrier coating. Zirconia exists in three crystallographic phases: cubic, tetragonal and monoclinic. Especially, the phase transformation of tetragonal phase to monoclinic phase accompanies significant volume expansion, so this transition generally results in cracking and contributes to the failure of the TBC system. Both the plasma sprayed ZrO$_2$-8Y$_2$O$_3$ (YSZ) coat and the ZrO$_2$,-25CeO$_2$,-2.5Y$_2$O$_3$ (CYSZ) coat are isothermally heat -treated at 130$0^{\circ}C$ and 150$0^{\circ}C$ for 100hr and cooled at different cooling rates. The monoclinic phase is not discovered in all the CYSZ annealed at 130$0^{\circ}C$ and 150$0^{\circ}C$. In the 150$0^{\circ}C$ heat-treated specimens, the YSZ contains some monoclinic phase while none exists in the 130$0^{\circ}C$ heat-treated YSZ coat. For the YSZ, the different phase transformation behaviors at the two temperatures are due to the stabilizer concentration of high temperature phases and grain growth. For the YSZ with 150$0^{\circ}C$-100hr annealing, the amount of monoclinic phase increased with the slower cooling rate. The extra oxygen vacancy, thermal stress, and c to t'phase transformation might suppress the t to m martensitic phase transformation.

  • PDF

Thermal Analysis of Nickel-Base Superalloys by Differential Scanning Calorimetry (시차주사열량측정법에 의한 니켈기 초내열 합금의 열분석)

  • Yun, Jihyeon;Oh, Junhyeob;Kim, Hongkyu;Yun, Jondo
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.235-240
    • /
    • 2016
  • Appropriate thermo-mechanical properties of nickel-based superalloys are achieved by heat treatment, which induces precipitation and solid solution hardening; thus, information on the temperature ranges of precipitation and dissolution of the precipitates is essential for the determination of the heat treatment condition. In this study, thermal analyses of nickel-based superalloys were performed by differential scanning calorimetry method under conditions of various heating rates of 5, 10, 20, or 40K/min in a temperature range of 298~1573K. Precipitation and dissolution temperatures were determined by measuring peak temperatures, constructing trend lines, and extrapolating those lines to the zero heating rate to find the exact temperature under isothermal condition. Determined temperatures for the precipitation reactions were 813, 952, and 1062K. Determined onset, peak, and offset temperatures of the first dissolution reaction were 1302, 1388, and 1406K, respectively, and those values of the second dissolution reaction were 1405, 1414, and 1462K. Determined solvus temperature was 1462K. The study showed that it was possible to use a simple method to obtain accurate phase transition temperatures under isothermal condition.

Amorphous-to-Crystalline Phase Transition of (InTe)x(GeTe) Thin Films ((InTe)x(GeTe) 박막의 비정질-결정질 상변화)

  • Song, Ki-Ho;Beak, Seung-Cheol;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.199-205
    • /
    • 2010
  • The crystallization speed (v) of amorphous (InTe)$_x$(GeTe) (x = 0.1, 0.3 and 0.5) films and their thermal, optical and electrical behaviors have been investigated using nano-pulse scanner (wavelength = 658 nm, laser beam diameter < 2 ${\mu}m$), X-ray diffraction (XRD), 4-point probe and UV-vis-IR spectrophotometer. These results were compared with those of $Ge_2Sb_2Te_5$ (GST) film, comprehensively utilized for phase-change random access memory (PRAM). Both v-value and thermal stability of (InTe)$_{0.1}$(GeTe) and (InTe)$_{0.3}$(GeTe) films could be enhanced in comparison with those of the GST. Contrarily, the v-value in the (InTe)$_{0.5}$(GeTe) film was so drastically deteriorated that we could not quantitatively evaluate it. This deterioration is thought because amorphous (InTe)$_{0.5}$(GeTe) film has relatively high reflectance, resulting in too low absorption to cause the crystallization. Conclusively, it could be thought that a proper compositional (InTe)$_x$(GeTe) films (e.g., x < 0.3) may be good candidates with both high crystallization speed and thermal stability for PRAM application.

Experiments and MAAP4 Assessment for Core Mixture Level Depletion After Safety Injection Failure During Long-Term Cooling of a Cold Leg LB-LOCA

  • Kim, Y. S.;B. U. Bae;Park, G. C.;K. Y. Sub;Lee, U. C .
    • Nuclear Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.91-107
    • /
    • 2003
  • Since DBA(Design Basis Accidents) has been studied rather separately from SA(Severe Accidents) in the conventional nuclear reactor safety analysis, the thermal hydraulics during transition between DBA and SA has not been identified so much as each accident itself. Thus, in this study, the thermal hydraulic behavior from DBA to the commencement of SA has been experimentally and analytically investigated for the long-term cooling phase of LB-LOCA(Large-Break Loss-of-Coolant Accident). Experiments were conducted for both cases of the loop seal open and closed in an integral test loop, named as SNUF (Seoul National University Facility), which was scaled down to l/6.4 in length and 1/178 in area of the APR1400 (Advanced Power Reactor 1400MWe). The core mixture level was a main measured value since it took major role in the fuel heat-up rate, the location of fuel melting initiation and the channel blockage by melting material during SA. Experimental results were compared to MAAP4.03 to assess its model of calculating the core mixture level. MAAP4.03 overestimates the core two- phase mixture level because sweep-out and spill-over and the measures to simulate the status of loop seal are not included, which is against the conservatism. Thus, it is recommended that MAAP4.03 should be improved to simulate the thermal hydraulic phenomena, such as sweep-out, spill-over and the status of loop seal.

Thermoelectric and Transport Properties of FeV1-xTixSb Half-Heusler System Synthesized by Controlled Mechanical Alloying Process

  • Hasan, Rahidul;Ur, Soon-Chul
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.725-732
    • /
    • 2018
  • The thermoelectric and transport properties of Ti-doped FeVSb half-Heusler alloys were studied in this study. $FeV_{1-x}Ti_xSb$ (0.1 < x < 0.5) half-Heusler alloys were synthesized by mechanical alloying process and subsequent vacuum hot pressing. After vacuum hot pressing, a near singe phase with a small fraction of second phase was obtained in this experiment. Investigation of microstructure revealed that both grain and particle sizes were decreased on doping which would influence on thermal conductivity. No foreign elements pick up from the vial was seen during milling process. Thermoelectric properties were investigated as a function of temperature and doping level. The absolute value of Seebeck coefficient showed transition from negative to positive with increasing doping concentrations ($x{\geq}0.3$). Electrical conductivity, Seebeck coefficient and power factor increased with the increasing amount of Ti contents. The lattice thermal conductivity decreased considerably, possibly due to the mass disorder and grain boundary scattering. All of these turned out to increase in power factor significantly. As a result, the thermoelectric figure of merit increased comprehensively with Ti doping for this experiment, resulting in maximum thermoelectric figure of merit for $FeV_{0.7}Ti_{0.3}Sb$ at 658 K.

A Study on Solid-Phase Epitaxy Emitter in Silicon Solar Cells (고상 성장법을 이용한 실리콘 태양전지 에미터 형성 연구)

  • Kim, Hyunho;Ji, Kwang-Sun;Bae, Soohyun;Lee, Kyung Dong;Kim, Seongtak;Park, Hyomin;Lee, Heon-Min;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.80-84
    • /
    • 2015
  • We suggest new emitter formation method using solid-phase epitaxy (SPE); solid-phase epitaxy emitter (SEE). This method expect simplification and cost reduction of process compared with furnace process (POCl3 or BBr3). The solid-phase epitaxy emitter (SEE) deposited a-Si:H layer by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) on substrate (c-Si), then thin layer growth solid-phase epitaxy (SPE) using rapid thermal process (RTP). This is possible in various emitter profile formation through dopant gas ($PH_3$) control at deposited a-Si:H layer. We fabricated solar cell to apply solid-phase epitaxy emitter (SEE). Its performance have an effect on crystallinity of phase transition layer (a-Si to c-Si). We confirmed crystallinity of this with a-Si:H layer thickness and annealing temperature by using raman spectroscopy, spectroscopic ellipsometry and transmission electron microscope. The crystallinity is excellent as the thickness of a-Si layer is thin (~50 nm) and annealing temperature is high (<$900^{\circ}C$). We fabricated a 16.7% solid-phase epitaxy emitter (SEE) cell. We anticipate its performance improvement applying thin tunnel oxide (<2nm).