• 제목/요약/키워드: Thermal neutron

검색결과 292건 처리시간 0.022초

Investigating the Fluence Reduction Option for Reactor Pressure Vessel Lifetime Extension

  • Kim, Jong-Kyung;Shin, Chang-Ho;Seo, Bo-Kyun;Kim, Myung-Hyun;Kim, Dong-Kyu;Lee, Goung-Jin;Oh, Su-Jin
    • Nuclear Engineering and Technology
    • /
    • 제31권4호
    • /
    • pp.408-422
    • /
    • 1999
  • To reduce the fast neutron fluence which deteriorates the RPV integrity, additional shields were assumed to be installed at the outer core structures of the Kori Unit 1 reactor, and its reduction effects were examined. Full scope Monte Carlo simulation with MCNP4A code was made to estimate the fast neutron fluence at the RPV. An optimized design option was found from various choices in geometry and material for shield structure. It was expected that magnitude of fast neutron fluence would be reduced by 39% at the circumferential weld of the RPV, resulting in extension of plant lifetime by 4.6 EFPYs based on the criterion of PTS requirement It was investigated that the nuclear characteristics and thermal hydraulic factors at the internal core were only negligibly influenced by the installation of additional shield structure.

  • PDF

Evaluation of Neutron Shielding Performance of Polyethylene Coated Boron Carbide-Incorporated Cement Paste using MCNP Simulation (MCNP 시뮬레이션을 통한 폴리에틸렌 코팅 탄화붕소 혼입 시멘트 페이스트의 중성자 차폐 성능 평가)

  • Park, Jae-Yeon;Jee, Hyeon-Seok;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2018년도 추계 학술논문 발표대회
    • /
    • pp.114-115
    • /
    • 2018
  • To develop an effective shielding material for spent fuel that emits fast neutrons is necessary. In this study, thermal neutron and fast neutron shielding performance of polyethylene coated boron carbide-incorporated cement paste was quantitatively analyzed by Monte Carlo N-Particle transport code (MCNP) simulations. As the results of the simulations, fast neutrons were effectively shielded through large quantity of hydrogen and boron elements in polyethylene and boron carbide.

  • PDF

NEUTRON CROSS SECTION DATA LIBRARY FOR PD-105, AG-109, XE-131 AND CS-133

  • LEE Y. D.;CHANG J. H.
    • Nuclear Engineering and Technology
    • /
    • 제37권1호
    • /
    • pp.101-108
    • /
    • 2005
  • The neutron induced nuclear cross-section data for Pd-105, Ag-109, Xe-131, and Cs-133 were calculated and evaluated from an unresolved energy to 20 MeV. The energy dependent optical model potential parameters were extracted based on recent experimental data and applied up to 20 MeV. A spherical optical model and a statistical model for the equilibrium energy, and a multistep direct and a multistep compound model for the pre-equilibrium energy were used in the calculation. The direct capture model was recently introduced for fast neutron capture. The theoretically calculated cross-sections were compared with the experimental data and the evaluated files. The total and capture cross-sections calculated using the model were in good agreement with the reference experimental data. The evaluated cross-section results were compiled in ENDF-6 format and merged with the resonance component, already adopted in the ENDF/B-VI release 8. New data library files covering from thermal to 20 MeV were created. They are at the preliminary stage of an ENDF/B- VII release.

Neutron Induced Capture Gamma Spectroscopy Sonde Design and Response Analysis Based on Monte Carlo Simulation (Monte Carlo 시물레이션에 기초한 포획모드 중성자-감마 스펙트럼 존데 설계 및 반응 분석)

  • Won, Byeongho;Hwang, Seho;Shin, Jehyun;Kim, Jongman;Kim, Ki-Seog;Park, Chang Je
    • Geophysics and Geophysical Exploration
    • /
    • 제18권3호
    • /
    • pp.154-161
    • /
    • 2015
  • For efficiently designing neutron induced gamma spectroscopy sonde, Monte Carlo simulation is employed to understand a dominant location of thermal neutron and classify the formation elements from the energy peak of capture gamma spectrum. A pulsed neutron generator emitting 14 MeV neutron particles was used as a source, and flux of thermal neutron was calculated from the twelve detectors arranged at each 10 cm intervals from the source. Design for reducing borehole effects using shielding materials was also applied to numerical sonde model. Moreover, principal elements and quantities of numerical earth models were verified through the energy spectrum analysis of capture gamma detected from a gamma detector. These results can help to enhance the signal-to-noise ratio, and determine an optimal placement of capture gamma detectors of neutron induced gamma spectroscopy sonde.

Enhancing the performance of a long-life modified CANDLE fast reactor by using an enriched 208Pb as coolant

  • Widiawati, Nina;Su'ud, Zaki;Irwanto, Dwi;Permana, Sidik;Takaki, Naoyuki;Sekimoto, Hiroshi
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.423-429
    • /
    • 2021
  • The investigation of the utilization of enriched 208Pb as a coolant to enhance the performance of a long-life fast reactor with a Modified CANDLE (Constant Axial shape of Neutron flux, nuclide densities, and power shape During Life of Energy production) burnup scheme has performed. The analyzes were performed on a reactor with thermal power of 800 MegaWatt Thermal (MWTh) with a refueling process every 15 years. Uranium Nitride (enriched 15N), 208Pb, and High-Cr martensitic steel HT-9 were employed as fuel, coolant, and cladding materials, respectively. One of the Pb-nat isotopes, 208Pb, has the smallest neutron capture cross-section (0.23 mb) among other liquid metal coolants. Furthermore, the neutron-producing cross-section (n, 2n) of 208Pb is larger than sodium (Na). On the other hand, the inelastic scattering energy threshold of 208Pb is the highest among Na, natPb, and Bi. The small inelastic scattering cross-section of 208Pb can harden the neutron energy spectrum. Therefore, 208Pb is a better neutron multiplier than any other liquid metal coolant. The excess neutrons cause more production than consumption of 239Pu. Hence, it can reduce the initial fuel loading of the reactor. The selective photoreaction process was developing to obtain enriched 208Pb. The neutronic was calculated using SRAC and JENDL 4.0 as a nuclear data library. We obtained that the modified CANDLE reactor with enriched 208Pb as coolant and reflector has the highest k-eff among all reactors. Meanwhile, the natPb cooled reactor has the lowest k-eff. Thus, the utilization of the enriched 208Pb as the coolant can reduce reactor initial fuel loading. Moreover, the enriched 208Pb-cooled reactor has the smallest power peaking factor among all reactors. Therefore, the enriched 208Pb can enhance the performance of a long-life Modified CANDLE fast reactor.

A Study on Point Defect Induced with Neutron Irradiation (중성자 조사에 의해 생성된 점결함 연구)

  • 김진현;이운섭;류근걸;김봉구;이병철;박상준
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제3권3호
    • /
    • pp.165-169
    • /
    • 2002
  • Silicon wafer is very important accuracy make use semiconductor device substrate. In this research, for the uniformity dopant density distribution obtained to Neutron Transmutation Doping on make use Si in P Doping study work. In this research. we irradiated neutron on FZ silicon wafers which had high resistivity (1000~2000 ${\Omega}$cm), HANARO reactor was utilized resistivity changes due to observed, the generation of neutron irradiation on point defect analyzed, point defect on resistivity changes inquire into the effect. Before neutron irradiation theoretical due to calculated 5 ${\Omega}$-cm, 20.1 ${\Omega}$-cm for HTS hole and 5 ${\Omega}$-cm, 26.5 ${\Omega}$-cm, 32.5 ${\Omega}$-cm for IP3 hole. After neutron irradiation through SRP measurement the designed resistivities were approached, which were 2.1 H-cm for HTS-1, 7.21 ${\Omega}$-cm for HTS-2, 1.79 ${\Omega}$-cm for IP-1, 6.83 ${\Omega}$-cm for IP-2, 9.23 ${\Omega}$-cm for IP-3, respectively. Also after neutron irradiation resistivity changes due to thermal neutron dependent irradiation hole types free.

  • PDF

Simulation of a neutron imaging detector prototype based on SiPM array readout

  • Mengjiao Tang;Lianjun Zhang;Bin Tang;Gaokui He;Chang Huang;Jiangbin Zhao;Yang Liu
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3133-3139
    • /
    • 2023
  • Neutron imaging technology as a means of non-destructive detection of materials is complementary to X-ray imaging. Silicon photomultiplier (SiPM), a new type of optical readout device, has overcome some shortcomings of traditional photomultiplier tube (PMT), such as high-power consumption, large volume, high price, uneven gain response, and inability to work in strong magnetic fields. Its application in the field of neutron detection will be an irresistible general trend. In this paper, a thermal neutron imaging detector based on 6LiF/ZnS scintillation screen and SiPM array readout was developed. The design of the detector geometry was optimized by geant4 Monte Carlo simulation software. The optimized detector was evaluated with a step wedge sample. The results show that the detector prototype with a 48 mm × 48 mm sensitive area can achieve about 38% detection efficiency and 0.26 mm position resolution when using a 300 ㎛ thick 6LiF/ZnS scintillation screen and a 2 mm thick Bk7 optical guide coupled with SiPM array, and has good neutron imaging capability. It provides effective data support for developing high-performance imaging detectors applied to the China Spallation Neutron Source (CSNS).

Computational and experimental forensics characterization of weapons-grade plutonium produced in a thermal neutron environment

  • Osborn, Jeremy M.;Glennon, Kevin J.;Kitcher, Evans D.;Burns, Jonathan D.;Folden, Charles M.III;Chirayath, Sunil S.
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.820-828
    • /
    • 2018
  • The growing nuclear threat has amplified the need for developing diverse and accurate nuclear forensics analysis techniques to strengthen nuclear security measures. The work presented here is part of a research effort focused on developing a methodology for reactor-type discrimination of weapons-grade plutonium. To verify the developed methodology, natural $UO_2$ fuel samples were irradiated in a thermal neutron spectrum at the University of Missouri Research Reactor (MURR) and produced approximately $20{\mu}g$ of weapons-grade plutonium test material. Radiation transport simulations of common thermal reactor types that can produce weapons-grade plutonium were performed, and the results are presented here. These simulations were needed to verify whether the plutonium produced in the natural $UO_2$ fuel samples during the experimental irradiation at MURR was a suitable representative to plutonium produced in common thermal reactor types. Also presented are comparisons of fission product and plutonium concentrations obtained from computational simulations of the experimental irradiation at MURR to the nondestructive and destructive measurements of the irradiated natural $UO_2$ fuel samples. Gamma spectroscopy measurements of radioactive fission products were mostly within 10%, mass spectroscopy measurements of the total plutonium mass were within 4%, and mass spectroscopy measurements of stable fission products were mostly within 5%.

Robustness of optimized FPID controller against uncertainty and disturbance by fractional nonlinear model for research nuclear reactor

  • Zare, Nafiseh;Jahanfarnia, Gholamreza;Khorshidi, Abdollah;Soltani, Jamshid
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2017-2024
    • /
    • 2020
  • In this study, a fractional order proportional integral derivative (FOPID) controller is designed to create the reference power trajectory and to conquer the uncertainties and external disturbances. A fractional nonlinear model was utilized to describe the nuclear reactor dynamic behaviour considering thermal-hydraulic effects. The controller parameters were tuned using optimization method in Matlab/Simulink. The FOPID controller was simulated using Matlab/Simulink and the controller performance was evaluated for Hard variation of the reference power and compared with that of integer order a proportional integral derivative (IOPID) controller by two models of fractional neutron point kinetic (FNPK) and classical neutron point kinetic (CNPK). Also, the FOPID controller robustness was appraised against the external disturbance and uncertainties. Simulation results showed that the FOPID controller has the faster response of the control attempt signal and the smaller tracking error with respect to the IOPID in tracking the reference power trajectory. In addition, the results demonstrated the ability of FOPID controller in disturbance rejection and exhibited the good robustness of controller against uncertainty.

A study on slim-hole neutron logging based on numerical simulation (소구경 시추공에서의 중성자검층 수치모델링 연구)

  • Ku, Bonjin;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • 제15권4호
    • /
    • pp.219-226
    • /
    • 2012
  • This study provides an analysis on results of neutron logging for various borehole environments through numerical simulation based on a Monte Carlo N-Particle (MCNP) code developed and maintained by Los Alamos National Laboratory. MCNP is suitable for the simulation of neutron logging since the algorithm can simulate transport of nuclear particles in three-dimensional geometry. Rather than simulating a specific tool of a particular service company between many commercial neutron tools, we have constructed a generic thermal neutron tool characterizing commercial tools. This study makes calibration chart of the neutron logging tool for materials (e.g., limestone, sandstone and dolomite) with various porosities. Further, we provides correction charts for the generic neutron logging tool to analyze responses of the tool under various borehole conditions by considering brine-filled borehole fluid and void water, and presence of borehole fluid.