• Title/Summary/Keyword: Thermal neutron

Search Result 292, Processing Time 0.021 seconds

Thermal neutron albedo and flux for different geometries neutron guide

  • Azimkhani, S.;Rezaei Ochbelagh, D.;Zolfagharpour, F.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1075-1080
    • /
    • 2019
  • This paper presents a study on thermal neutron reflection properties of neutron guide for cylinder, spindle, elliptic and parabolic geometries using $^{241}Am-Be$ neutron source (5.2 Ci) and $BF_3$ detector, whereas neutron guide is important instrument for transportation of neutrons. To this goal, the required inner and outer radii of neutron guide have been calculated to achieve the highest guided thermal neutron flux based on MCNPX Monte Carlo code. The maximum flux of cylinder geometry with a length 50 cm has been obtained at an inner radius 9 cm and an outer radius 21 cm. Also, the maximum value of thermal neutron albedo is $0.46{\pm}0.001$ at 12 cm thickness of parabolic guide.

THIN-FILM-COATED DETECTORS FOR NEUTRON DETECTION

  • McGregor Douglas S.;Gersch Holly K.;Sanders Jeffrey D.;Klann Raymond T.;Lindsay John T.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.167-175
    • /
    • 2001
  • Semiconductor diode detectors coated with neutron reactive material are presently under investigation for various uses, such as remote sensing of thermal neutrons, fast neutron counting, and thermal neutron radiography. Theory indicates that single-coated devices can yield thermal neutron efficiencies from 4% to 11 %, which is supported by experimental evidence. Radiation endurance measurements indicate that the devices function well up to a limiting thermal neutron fluence of $10^{13}/cm^2$, beyond which noticeable degradation occurs. Thermal neutron contrast images of step wedges and simple phantoms, taken with dual in-line pixel devices, show promise for thermal neutron imaging detectors.

  • PDF

Radiation Effect of X-Ray and Thermal Neutron on Robinia pseudoacacia L. and Some Other Species (아까시나무외 몇 수종(樹種)에 대(對)한 X-Ray와 Thermal Neutron의 조사효과(照射効果))

  • Kim, Chung Suk;Lee, Suk Koo;Hyun, Sin Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 1973
  • In an effort to improve the major tree species in Korea, the seed of Robinia pseudoacacia, Pinus rigida, Pinus densiflora, Pinus thunbergii and Larix leptolepis were treated with X-ray and thermal neutron at the Brookhaven National Laboratory, and germination rate of the seed and some characteristics of the seedlings from irradiated seed were investigated and the results were summarized as follows. 1. The germination rate of the irradiated seed of Robinia pseudoacacia, Pinus densiflora, Pinus thunbergii and Pinus rigida was decreased, when the irradiation time of thermal neutron increased from 3 hours to 9 hours. The seed of Larix leptolepis was completely died out in all range of irradiation time. 2. The seed of Pinus densiflora, Robinia pseudoacacia and Pinus rigida showed low germination rate, when the dosage of radiation increased in the range of 10,000r-30,000r X-ray. This dosage of radiation was almost lethal to the seed of Pinus thunbergii and Larix leptolepis. 3. The growth rate of radiated Robinia pseudoacacia has been decreased when the dosage of X-ray and thermal neutron increased. However, the trees treated with thermal neutron for 3 hours showed 14.9 percent-increase in seedling height and some thornless individuals appeared in this treatment. 4. Individuals with variegated leaf, rugose leaf and albino were appeared in X-ray and thermal neutron treatment. 5. Abnormal mitosis of somatic cell, cell with two nucleoli, cell with two nuclei and chromosome clump in mitosis of somatic cell were observed in Robinia pseudoacacia irradiated with thermal neutron. 6. Resistanty against pawdery mildew was decreased in Robinia pseudoacacia radiated with X-ray and thermal neutron. 7. Length of stomata did not show any difference however number of stomata per unit area decreased in Robinia pseudoacacia radiated with thermal neutron. The leaves of Robinia pseudoacacia radiated with thermal neutron were thicker than those of non-treated one, but width of palisade tissue was decreased. The most sensitive one among those species to the thermal neutron treatment was Larix leptolepis, followed by Pinus densiflora, Robinia pseudoacacia, Pinus thunbergii and Pinus rigida in the order. In X-ray treatment, the most sensitive one was Larix leptolepis, followed by Pinus densiflora, Pinus thunbergii, Pinus rigida and Robinia pseudoacacia in the order. Morphological, cytological variation of the radiated Robinia pseudoacacia seemed to indicate some possibility to be used for tree improvement.

  • PDF

Evaluation of cadmium ratio for conceptual design of a cyclotron-based thermal neutron radiography system

  • Kuo, Weng-Sheng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2572-2578
    • /
    • 2022
  • An approximate method for calculating the cadmium ratio of a cyclotron-based thermal neutron radiography system was developed. In this method, the Monte-Carlo code, MCNP6.2, was employed to calculate the neutron capture rates of Au-197, and the cadmium ratio was obtained by computing the ratio of neutron capture rates. From the simulation results, the computed cadmium ratio is reasonably acceptable, and the assumption of ignoring the fast neutron contribution to the cadmium ratio is valid.

Study on Thermal Neutron Efficiency for Neutron Induced Prompt Gamma-ray Spectrometer Using Various Reflectors (즉발감마선 계측시스템의 반사체를 이용한 열중성자 효율증대 연구)

  • Park, Y.J.;Song, B.C.;Jee, K.Y.
    • Analytical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.426-429
    • /
    • 2003
  • Neutron induced prompt gamma-ray spectroscopy (NIPS) system equipped with a $^{252}Cf$ neutron source and a n-type coaxial HPGe detector was installed for the quantitative analysis of aqueous samples in KAERI, Korea. Since the thermal neutron flux for the $^{252}Cf$ neutron source is relatively low compared to that for the reactor, the use of a thermal neutron reflector in the NIPS system may lead to improved results. The enhancement by using various reflectors was carried out by comparing the Cl peak with or without a cadmium plate between sample and the $^{252}Cf$ source. The use of pyrolitic graphite as a reflector provided a good result.

Investigation of Response of Several Neutron Surveymeters by a DT Neutron Generator (DT 중성자 발생기에 의한 중성자 검출기 반응도 조사)

  • Kim, Sang-In;Jang, In-Su;Kim, Jang-Lyul;Lee, Jung-Il;Kim, Bong-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.1
    • /
    • pp.35-40
    • /
    • 2012
  • Several neutron measuring devices were tested under the neutron fields characterized with two distinct kinds of thermal and fast neutron spectrum. These neutron fields were constructed by the mixing of both thermal neutron fields and fast neutron fields. The thermal neutron field was constructed using by a graphite pile with eight AmBe neutron sources. The fast neutron field of 14 MeV was made by a DT neutron generator. In order to change the fraction of fast neutron fluence rate in each neutron fields, a neutron generator was placed in the thermal neutron field at 50 cm and 150 cm from the reference position. The polyethylene neutron collimator was used to make moderated 14 MeV neutron field. These neutron spectra were measured by using a Bonner sphere system with an LiI scintillator, and dosimetric quantities delivered to neutron surveymeters were determined from these measurement results.

Estimation of Neutron Absorption Ratio of Energy Dependent Function for $^{157}Gd$ in Energy Region from 0.003 to 100 eV by MCNP-4B Code

  • Lee, Sam-Yol
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.3
    • /
    • pp.23-25
    • /
    • 2009
  • Gd-157 material has very large neutron capture cross section in the thermal region. So it is very useful to shield material for thermal neutrons. Futhermore, in the neutron capture experiment and calculation, the neutron absorption and scattering are very important. Especially these effects are conspicuous in the resonance energy region and below the thermal energy region. In the case of very narrow resonance, the effect of scattering is to be more considerable factor. In the present study, we obtained energy dependent neutron absorption ratios of natural indium in energy region from 0.003 to 100 keV by MCNP-4B Code. The coefficients for neutron absorption was calculated for circular type and 1 mm thickness. In the lower energy region, neutron absorption is larger than higher region, because of large capture cross section (1/v). Furthermore it seems very different neutron absorption in the large resonance energy region. These results are very useful to decide the thickness of sample and shielding materials.

  • PDF

The development of a thermal neutron dosimetry using a semiconductor (반도체형 열중성자 선량 측정센서 개발)

  • Lee, Nam-Ho;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.789-792
    • /
    • 2003
  • pMOSFET having 10 ${\mu}um$ thickness Gd layer has been tested to be used as a slow neutron sensor. The total thermal neutron cross section for the Gd is 47,000 barns and the cross section value drops rapidly with increasing neutron energy. When slow neutrons are incident to the Gd layer, the conversion electrons are emitted by the neutron absorption process. The conversion electrons generate electron-hole pairs in the $SiO_2$ layer of the pMOSFET. The holes are easily trapped in Oxide and act as positive charge centers in the $SiO_2$ layer. Due to the induced positive charges, the threshold turn-on voltage of the pMOSFET is changed. We have found that the voltage change is proportional to the accumulated slow neutron dose, therefore the pMOSFET having a Gd nuclear reaction layer can be used for a slow neutron dosimeter. The Gd-pMOSFET were tested at HANARO neutron beam port and $^{60}CO$ irradiation facility to investigate slow neutron response and gamma response respectively. Also the pMOSFET without Gd layer were tested at same conditions to compare the characteristics to the Gd-pMOSFET. From the result, we have concluded that the Gd-pMOSFET is very sensitive to the slow neutron and can be used as a slow neutron dosimeter. It can also be used in a mixed radiation field by subtracting the voltage change value of a pMOSFET without Gd from the value of the Gd-pMOSFET.

  • PDF

Characterization of neutron spectra for NAA irradiation holes in H-LPRR through Monte Carlo simulation

  • Kyung-O Kim;Gyuhong Roh;Byungchul Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4226-4230
    • /
    • 2022
  • The Korea Atomic Energy Research Institute (KAERI) has designed a Hybrid-Low Power Research Reactor (H-LPRR) which can be used for critical assembly and conventional research reactor as well. It is an open tank-in-pool type research reactor (Thermal Power: 50 kWth) of which the most important applications are Neutron Activation Analysis (NAA), Radioisotope (RI) production, education and training. There are eight irradiation holes on the edge of the reactor core: IR (6 holes for RI production) and NA (2 holes for NAA) holes. In order to quantify the elemental concentration in target samples through the Instrumental Neutron Activation Analysis (INAA), it is necessary to measure neutron spectrum parameters such as thermal neutron flux, the deviation from the ideal 1/E epithermal neutron flux distribution (α), and the thermal-to-epithermal neutron flux ratio (f) for the irradiation holes. In this study, the MCNP6.1 code and FORTRAN 90 language are applied to determine the parameters for the two irradiation holes (NA-SW and NA-NW) in H-LPRR, and in particular its α and f parameters are compared to values of other research reactors. The results confirmed that the neutron irradiation holes in H-LPRR are designed to be sufficiently applied to neutron activation analysis, and its performance is comparable to that of foreign research reactors including the TRIGA MARK II.

Calculation of thermal neutron scattering data of MgF2 and its effect on beam shaping assembly for BNCT

  • Jiaqi Hu;Zhaopeng Qiao;Lunhe Fan;Yongqiang Tang;Liangzhi Cao;Tiejun Zu;Qingming He;Zhifeng Li;Sheng Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1280-1286
    • /
    • 2023
  • MgF2 as a moderator material has been extensively used in the beam shaping assembly (BSA) that plays an important role in the boron neutron capture therapy (BNCT). Regarded as important for applications, the thermal neutron scattering data of MgF2 were calculated, based on the phonon expansion model. The structural properties of MgF2 were researched by the VASP code based on the ab-initio methods. The PHONOPY code was employed to calculate the phonon density of states. Furthermore, the NJOY code was used to calculate the thermal neutron scattering data of MgF2. The calculated inelastic cross sections plus absorption cross sections are in agreement with the available experimental data. The neutron transport in the BSA has been simulated by using a hybrid Monte-Carlo-Deterministic code NECP-MCX. The results indicated that compared with the calculation of the free gas model, the thermal neutron flux and epithermal neutron flux at the BSA exit port calculated by using the thermal neutron scattering data of MgF2 were reduced by 27.7% and 8.2%, respectively.