• Title/Summary/Keyword: Thermal evaporation method

Search Result 239, Processing Time 0.024 seconds

Characteristics of ZnO Nanowire Fabricated by Thermal Evaporation Method Depending on Different Temperatures and Oxygen Pressure (Thermal Evaporation법으로 제작한 ZnO 나노선의 온도와 산소유량에 따른 성장 특성)

  • Oh, Won-Seok;Jang, Gun-Eik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.766-769
    • /
    • 2008
  • Zinc oxide (ZnO) nanowires were prepared on Si substrates by a thermal evaporation method at different temperatures and $O_2$ pressure. Microstructural analysis of the obtained ZnO nanowires was performed by using transmission electron microscopy(TEM) and scanning electron microscopy(SEM). Phase analysis was done using X-ray diffraction(XRD). As the deposition temperature and oxygen pressure were increased, the diameter and length of ZnO nanowires had a tendency to increase. Based on TEM and XRD analyses, the nanowires are single crystalline in nature and consist of a single phase. According to the measurements, the ZnO nanowires grown at 1100$^{\circ}C$, Ar 50 sccm, $O_2$ 10 sccm have good properties.

Film Properties of TiO2 Made by Activated Reactive Evaporation (활성화 반응으로 제작된 TiO2의 박막특성)

  • Park, Yong-Gwon;Choi, Jae-Ha
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.3
    • /
    • pp.151-154
    • /
    • 2001
  • $TiO_2$ thin film has wide application because of its high capacitanca, reflection, and good transmissivity in visible range. $TiO_2$ thin film can be made by thermal deposition method, reactive evaporation method, activated reactive evaporation(ARE) method. In the case of thermal deposition, the oxygen deficiency can occur because the melting point of Ti is very high. While in the case of reactive evaporation, high density $TiO_2$ can not be made, because reactive gas($O_2$) and evaporated material(Ti) are not fully combined, activated reactive evaporation, $TiO_2$ is easily deposited at lower gas pressure compared with reactive evaporation because the ionized reactive gas is made by plasma. Therefore, activated reactive evaporation is very useful to deposit the material having the high melting point. In this work, we formed $TiO_2$ thin film by activated reactive evaporation method. The surface of $TiO_2$ thin film was analyzed by X-ray photoelectron spectroscopy. The surface morphology which was analyzed by atomic force microscopy(AFM) shows that feature of the film surface is uniform. The dielectric capacitance, withstanding voltage were $600{\mu}F/cm^2$, 0.4V respectively. In further work, we can increase the withstanding voltage by improving the deposition parameter of substrates.

  • PDF

Thermal evaporation을 이용해 성장 온도에 따른 ZnO nanorod의 특성

  • Lee, Hye-Ji;Kim, Dong-Yeong;Kim, Ji-Hwan;Kim, Hae-Jin;Son, Seon-Yeong;Kim, Jong-Jae;Kim, Hwa-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.25-25
    • /
    • 2009
  • Zinc Oxide (ZnO) nanorod were grown on Si wafer by a thermal evaporation method at various temperatures. And their structure and optical properties were measured using Photoluminescence(PL), Scanning electron microscopy(SEM), and X-ray diffraction(XRD) analysis.

  • PDF

Experiment on the Charge and Discharge of Thermal Energy for Under-Water Harvest-Type Ice Storage System (수중 하베스트형 빙축열시스템의 축방냉 특성 실험)

  • Kim, J.D.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.2
    • /
    • pp.11-17
    • /
    • 2002
  • This paper is concerned with the development of a new method for making, separating ice and storage floated ice by installing an evaporation plate at under-water within a storage tank. In a conventional harvest-type ice storage system, a tank saves ice by separating an ice from an installed evaporation plate, which is located above an ice storage tank as an ice storage system. Developed new harvest-type method shows good heat transfer efficiency than a convectional method. It is because the evaporation panel is directly contacted with water in a storage tank. Also, at a conventional system a circulating pump, a circulating water distributor and a piping are installed, however these components are not necessary in a new method. In this study ice storage systems are experimentally investigated to study the charge and discharge of thermal energy. The results show the applicable possibility and performance enhancement of a new type.

Synthesis and Characterization of Alumina Composite Membrane by Al Evaporation and Thermal Oxidation (알루미늄의 진공증발과 열산화에 의한 알루미나 복합분리막의 제조 및 특성분석)

  • 이동호;최두진;현상훈
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.349-358
    • /
    • 1995
  • The ceramic composite membrane was synthesized by thermal oxidation after evaporation of Al on the support prepared by slip casting process. Oxidation was performed at $700^{\circ}C$ and 80$0^{\circ}C$ under dry oxygen atmosphere. It was considered as optimum oxidation condition that the membrane showed a knudsen behaviro. A further oxidation resulted in an increase of gas permeability because top layer became densified. Then, a multi-layered composite membrane was synthesized through a sol-gel method, evaporation and thermal oxidation of Al coating processes. While the membrane was thermally stable up to 80$0^{\circ}C$, gas permeability was rapidly decreased even at a slight amount of deposition of Al.

  • PDF

Effect of oxygen working pressure on morphology and luminescence properties of SnO2 micro/nanocrystals formed by thermal evaporation method

  • Kim, Min-Sung
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.424-427
    • /
    • 2018
  • The effect of oxygen pressure in the synthesis of $SnO_2$ micro/nanocrystals through thermal evaporation of Sn powder was investigated. The thermal evaporation process was performed at $1000^{\circ}C$ for 1 hr under various oxygen pressures. The pressure of oxygen changed from 10 to 500 Torr. The morphology of $SnO_2$ crystals changed drastically with oxygen pressure. $SnO_2$ nanoparticles with an average diameter of 120 nm were formed at oxygen pressure lower than 10 Torr. $SnO_2$ nanowires were grown under an oxygen pressure of 100 Torr. The nanowires have diameters in the range of 100 ~ 500 nm and lengths of several tens of micrometers. As increasing the oxygen pressure to 500 Torr, the sizes of wires increased. A strong visible emission peak centered at about 500 ~ 600 nm was observed in the room temperature cathodoluminescence spectra of all the products.

Synthesis and Characterization of Cu Nanofluid Prepared by Pulsed Wire Evaporation Method (전기선 폭발법을 이용하여 제조된 구리 나노유체의 특성평가)

  • Kim, Chang-Kyu;Lee, Gyoung-Ja;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.270-275
    • /
    • 2010
  • Ethylene glycol-based Cu nanofluids were prepared by pulsed wire evaporation (PWE) method. The structural properties of Cu nanoparticles were studied by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The average diameter and Brunauer Emmett Teller (BET) surface area of Cu nanoparticles were about 100 nm and $7.46\;m^2/g$, respectively. The thermal conductivity and viscosity of copper nanofluid were measured as functions of Cu concentration and temperature. As the volume fraction of Cu nanoparticles increased, both the enhanced ratios of thermal conductivity and viscosity of Cu nanofluids increased. As the temperature increased, the enhanced ratio of thermal conductivity increased, but that ratio of viscosity decreased.

Molecular Dynamics Study on Evaporation Process of Adherent Molecules on Surface by High Temperature Gas

  • Yang, Young-Joon;Osamu Kadosaka;Masahiko Shibahara;Masashi Katsuki;Kim, Si-Pom
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2104-2113
    • /
    • 2004
  • Surface degreasing method with premixed flame is proposed as the removal method of adherent impurities on materials. Effects of adherent molecular thickness and surface potential energy on evaporation rate of adherent molecules and molecular evaporation mechanism were investigated and discussed in the present study. Evaporation processes of adherent molecules on surface molecules were simulated by the molecular dynamics method to understand thermal phenomena on evaporation processes of adherent molecules by using high temperature gas like burnt gas. The calculation system was composed of a high temperature gas region, an adherent molecular region and a surface molecular region. Both the thickness of adherent molecules and potential parameters affceted the evaporation rate of adherent molecules and evaporation mechanism in molecular scale.

Liquid crystal aligning capabilities for vertical aligned NLC on the $CeO_x$ thin film layer with thermal evaporation

  • Han, Jin-Woo;Kim, Mi-Jung;Kim, Jong-Yeon;Han, Jeong-Min;Kim, Young-Hwan;Kim, Jong-Hwan;Kim, Byoung-Yong;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.371-371
    • /
    • 2007
  • In this study, liquid crystal (LC) aligning capabilities for vertical alignment on the $CeO_x$ thin film by thermal evaporation method were investigated. Also, the control of pretilt angles and thermal stabilities of the NLC treated on $CeO_x$ thin film were investgated. The uniform LC alignment on the $CeO_x$ thin film surfaces and good thermal stabilities with thermal evaporation can be achieved. It is considerated that the LC alignment on the $CeO_x$ thin film by thermal evaporation is attributed to elastic interaction between LC molecules and micro-grooves at the $CeO_x$ thin film surface created by evaporation. In addition, it can be achieved the good electro-optical (EO) properties of the VA-LCD on $CeO_x$ thin film layer with oblique thermal evaporation.

  • PDF

A Study on Development of PLD Process for PM OLED Device Manufacture (PM OLED 디바이스 제작을 위한 PLD 공정 개발에 관한 연구)

  • Lee, Eui-Sik;Lee, Byoung-Wook;Kim, Chang-Kyo;Hong, Jin-Su;Park, Sung-Hoon;Moon, Soon-Kwun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.264-266
    • /
    • 2005
  • Manufacture of OLED device used thermal evaporation method. However thermal evaporation method has many defect as thermal damage of substrate, difficult of dopant rate control and low utilization of organic materials. so we suggest PLD(Pulsed Laser Deposition) method that solution of these problems. PLD method has many advantage as without thermal damage, easy indicate of deposition rate per one pulse and good utilization of organic materials. In this paper we apply the PLD method for manufacture of device so we present high efficiency device manufacture using PLD method that has good deposition uniformity, surface rough and deposition rate.

  • PDF