Effect of oxygen working pressure on morphology and luminescence properties of SnO2 micro/nanocrystals formed by thermal evaporation method

  • Kim, Min-Sung (Department of Information & Communications Engineering, Tongmyong University)
  • Published : 2018.10.01

Abstract

The effect of oxygen pressure in the synthesis of $SnO_2$ micro/nanocrystals through thermal evaporation of Sn powder was investigated. The thermal evaporation process was performed at $1000^{\circ}C$ for 1 hr under various oxygen pressures. The pressure of oxygen changed from 10 to 500 Torr. The morphology of $SnO_2$ crystals changed drastically with oxygen pressure. $SnO_2$ nanoparticles with an average diameter of 120 nm were formed at oxygen pressure lower than 10 Torr. $SnO_2$ nanowires were grown under an oxygen pressure of 100 Torr. The nanowires have diameters in the range of 100 ~ 500 nm and lengths of several tens of micrometers. As increasing the oxygen pressure to 500 Torr, the sizes of wires increased. A strong visible emission peak centered at about 500 ~ 600 nm was observed in the room temperature cathodoluminescence spectra of all the products.

Keywords

Acknowledgement

Supported by : Tongmyong University

References

  1. N.M. Shaalan, T. Yamazaki and T. Kikuta, Sens. Actuators B 153 (2011) 11-16. https://doi.org/10.1016/j.snb.2010.09.070
  2. J.L. Yang, S.J. An, W.I. Park, G.C. Yi and W. Choi, Adv. Mater. 16 (2004) 1661-1664. https://doi.org/10.1002/adma.200306673
  3. H.-C. Chiu and C.-S. Yeh, J. Phys. Chem. C 111 (2007) 7256-7259.
  4. F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu and D.R. Yuan, J. Phys. Chem. B 108 (2004) 8119-8123.
  5. H. Yang, X. Song, X. Zhang, W. Ao and G. Qui, Mater. Lett. 57 (2003) 3124-3127. https://doi.org/10.1016/S0167-577X(03)00008-9
  6. S. Nagirnyak, V. Lutz, T. Dontsova and I. Astrelin, Springer Proc. Phys. 183 (2016) 331-341.
  7. Z.R. Dai, Z.W. Pan and Z.L. Wang, Adv. Funct. Mater. 13 (2003) 519. https://doi.org/10.1002/adfm.200304335
  8. Z.R. Dai, Z.W. Pan and Z.L. Wang, J. Am. Chem. Soc. 124 (2002) 8673. https://doi.org/10.1021/ja026262d
  9. H.W. Kim, J.W. Lee, S.H. Shim and C. Lee, J. Korean Phys. Soc. 51 (2007) 198. https://doi.org/10.3938/jkps.51.198
  10. S.H. Luo, Q. Wan, W.L. Liu, M. Zhang, Z.T. Song, C.L. Lin and P.K. Chu, Prog. Solid State Chem. 33 (2005) 287-292. https://doi.org/10.1016/j.progsolidstchem.2005.11.008
  11. S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu, Paul K. Chu, Nanotechnology 17 (2006) 1695-1699. https://doi.org/10.1088/0957-4484/17/6/025
  12. S. Luo, P.K. Chu, W. Liu, M. Zhang and C. Lin, Appl. Phys. Lett. 88 (2006) 183112. https://doi.org/10.1063/1.2201617