• Title/Summary/Keyword: Thermal curing

Search Result 520, Processing Time 0.027 seconds

Use of Atmospheric Pressure Cold Plasma for Meat Industry

  • Lee, Juri;Lee, Cheol Woo;Yong, Hae In;Lee, Hyun Jung;Jo, Cheorun;Jung, Samooel
    • Food Science of Animal Resources
    • /
    • v.37 no.4
    • /
    • pp.477-485
    • /
    • 2017
  • Novel, effective methods to control and prevent spoilage and contamination by pathogenic microorganisms in meat and meat products are in constant demand. Non-thermal pasteurization is an ideal method for the preservation of meat and meat products because it does not use heat during the pasteurization process. Atmospheric pressure cold plasma (APCP) is a new technology for the non-thermal pasteurization of meat and meat products. Several recent studies have shown that APCP treatment reduces the number of pathogenic microorganisms in meat and meat products. Furthermore, APCP treatment can be used to generate nitrite, which is an essential component of the curing process. Here, we introduce the effectiveness of APCP treatment as a pasteurization method and/or curing process for use in the meat and meat product processing industry.

Preparation of Superabsorbent PVA Films with Polycarboxylic Acid Crosslinkers (폴리카르복시산 가교제를 이용한 고흡수성 PVA 필름의 제조)

  • Koo, Gwang-Hoe;Yoon, Sung-Jong;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.21 no.4
    • /
    • pp.39-45
    • /
    • 2009
  • PVA films were crosslinked with dimethylol dihydroxy ethylene urea (DMDHEU) and three polycarboxylic acids of butanetetracarboxylic acid (BTCA), citric acid and malic acid Different factors influencing the crosslinking treatment with BTCA were investigated including BTCA and sodium hypophosphite (SHP) concentration, curing temperature and time. The cured films was extracted with boiling water and gel fraction was calculated based on weight change of the PVA films. The gel fraction of PVA films increased with increasing curing temperature and time. And the resistance to water and thermal stability of the crosslinked PVA films improved with the BTCA crosslinking treatment. While crosslinking with citric acid gave the highest gel fraction among the crosslinkers, crosslinking with malic acid showed the highest absorbancy in 0.9% saline solution, which was attributed to lower crosslink density and high number-average molecular weight between crosslinks. The superabsorbent PVA films could be prepared by adjusting the crosslinking condition of PVA with polycarboxilic acids.

Physical Properties of Cement System Insulation Using Blast Furnace Slag

  • Seo, Sung Kwan;Park, Jae Wan;Cho, Hyeong Kyu;Chu, Yong Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.61-66
    • /
    • 2018
  • In this study, fabrication method of inorganic insulation were studied to reduce $CO_2$ from buildings. Main materials for inorganic insulation were used cement, blast furnace slag and aluminum powder as foaming agent. Mixing ratio of cement and slag was controlled and physical properties of inorganic insulation were analyzed. When inorganic insulation was fabricated using cement and slag, expanded slurries were not sunken and hardened normally. Pore size was 0.5 - 2 mm; mean pore size was about 1mm in inorganic insulation. Compressive strength of inorganic insulation increased with curing time and increased slightly with cement fineness. However, specific gravity decreased slightly with curing time; this phenomenon was caused by evaporation of adsorptive water. When inorganic insulation was dried at $60^{\circ}C$, compressive strength was higher than that of undried insulation. The highest compressive strength was found with a mixture of cement (50%) and slag (30%) in inorganic insulation. Compressive strength was 0.32 MPa, thermal conductivity was 0.043 W/mK and specific gravity was $0.12g/cm^3$.

Thermal Curing and Electrical Properties of Epoxy/Graphite/Expanded Graphite Composite for Bipolar Plate of Pemfc (PEMFC 바이폴라 플레이트 제조용 EPOXY/GRAPHITE/EXPANDED GRAPHITE 복합재료의 열경화 및 전기적 성질)

  • Lee, Jae-Young;Lee, Hong-Ki
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.6
    • /
    • pp.827-834
    • /
    • 2011
  • Epoxy/graphite/expanded graphite composites have been prepared in various weight ratios and thermal degradation and electrical properties were estimated in order to use for the bipolar plate materials in PEMFC. Thermogravimetric analysis (TGA) showed that the epoxy/graphite system cured by a curing agent GX-533 was most proper because its weight loss until $80^{\circ}C$ at which PEMFC would be operated was 0.3 wt%, and differential scanning calorimetry (DSC) analysis showed its cure temperature would be sufficient at $80^{\circ}C$. The activation energy for the cure reaction was 132.0 kJ/mol and the pre-exponential factor was $1.76{\times}10^{17}min^{-1}$. Electrical conductivity on the surface of the bipolar plate prepared under a pressure of 200 $kgf/cm^2$ was increased from 4 to 25 $S/cm^2$ by increasing expanded graphite (EG) content from 50 phr to 90 phr. The percolation threshold was initiated around 75 phr and the corrosion rate at 80 phr was 1.903 $uA/cm^2$.

Effects of Carbon Black on Mechanical Properties and Curing Behavior of Liquid Silicone Rubber (LSR) (Carbon Black 첨가에 따른 액상 실리콘 고무(LSR)의 기계적 특성 및 경화 거동 분석)

  • Beom-Joo Lee;Seon-Ju Kim;Hyeong-Min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.27-32
    • /
    • 2023
  • Liquid silicon rubber (LSR) has fine thermal compatibility and is widely used in various fields such as medical care and automobiles because it is easy to implement products with good fluidity. With the recent development of flexible sensors, the focus has been on manufacturing conductive elastomers, such as silicone as elastic materials, and carbon black, CNT, and graphene are mainly used as nanomaterials that impart conductive phases. In this study, mechanical behavior and curing behavior were measured and analyzed to manufacture a CB-LSR complex by adding Carbon Black to LSR and to identify properties. As a result of the compression test, the elastic modulus tended to increase as carbon black was added. When the swelling test and the compression set test were conducted, the swelling rate tended to decrease as the content of carbon black increased, and the compression set tended to increase. In addition, DSC measurements showed that the total amount of reaction heat increased slightly as the carbon black content increased. It is considered that carbon black was involved in the crosslinking of LSR to increase the crosslinking density and have a positive effect on oil resistance reinforcement.

A Study on the Optimal Conditions according to the Content of the Glass Fiber in the Resin-Automotive Motor Housing Application

  • Jin-Gu Kang;Gang-hyun Oh;Kyung-a Kim
    • Design & Manufacturing
    • /
    • v.18 no.3
    • /
    • pp.9-14
    • /
    • 2024
  • Among the various plastic polymer molding methods, thermoplastic resins are most commonly used for mass production due to their suitability for high-volume manufacturing. However, recently, thermosetting resins have been utilized depending on product design and functionality, necessitating appropriate mold design and injection conditions to achieve suitable molded products. Therefore, resin selection must be considered not only in terms of product design but also based on functionality, taking into account the physical and mechanical properties of the resin. Additionally, since the flow characteristics of the resin are critical in injection molding, molding conditions should be set according to the thermal, physical, and rheological properties of the resin.This study focuses on the effects of filler content (glass fiber) in thermosetting fiber-reinforced plastics (FRP), specifically Bulk Molding Compound (BMC) resin, which is crucial for thermal deformation in automotive motor housing products. The resins used in this study include Generic BMC1 resin, BMC1 with 15% glass fiber, and BMC1 with 30% glass fiber. The research employs CAE (Computer-Aided Engineering) to investigate strain under basic conditions for the BMC resin and the strain variations with the addition of glass fiber. It also examines the impact of filler content on injection molding conditions, specifically mold temperature and curing time. Experimental results indicate that mold temperature has the most significant effect among the injection conditions, while the impact of curing time was relatively minor.

Spring-back in GFR / CFR Unsymmetric Hybrid Composite Materials (유리섬유 / 탄소섬유 강화 비대칭 하이브리드 복합재료의 스프링 백)

  • Jung Woo-Kyun;Ahn Sung-Hoon;Won Myung-Shik
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.1-8
    • /
    • 2005
  • The fiber-reinforced composite materials have been advanced for various applications because of their excellent mechanical and electromagnetic properties. On their manufacturing processes, however, thermo-curing inherently produces the undesired thermal deformation mainly from temperature drop from the process temperature to the room temperature, so called spring-back. The spring-back must be understood especially in the hybrid composites in order to design and fabricate desired shape. In this research, (glass fiber / epoxy) + (carbon fiber / epoxy) unsymmetric hybrid composites were fabricated under various conditions such as cure cycle, laminate thickness, stacking sequence and curing sequence. Coupons were made and spring-back were measured using coordinate measuring machine (CMM). Using the Classical Lamination Theory (CLT) and finite element analysis (ANSYS), the behavior of spring-back were predicted and compared with the experimental data. The results from CLT and FEA agreed well with the experimental data. Although, the spring-back could be reduced by lowering curing temperature, at any case, the spring-back could not be removed completely.

Effect of pMDI or HDI Content in UMF Resin on Bonding High Moisture Content Veneers

  • Xu, Guang-Zhu;Eom, Young-Geun;Lee, Byoung-Ho;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.414-420
    • /
    • 2010
  • The effect of polymeric diphenyl methane-4,4-diisocyanate (pMDI) or 1,6-hexamethylene diisocyanate (HDI) in the UMF resin was discussed for improvement of the dry and wet shear strengths of plywood manufactured from high moisture content veneers. The curing behavior of UMF resin by pMDI or HDI content was examined by DSC and TGA, and its adhesion performance was evaluated by dry and wet shear strength tests of plywood. With the increase of pMDI content in the UMF resin, the curing temperature, reaction enthalpy (${\Delta}H$), and thermal stability consistently increased. With the increase of HDI content in the UMF resin, however, the curing temperature and reaction enthalpy (${\Delta}H$) decreased consistently and the thermal stability slightly increased in the range of 200 to $400^{\circ}C$ but decreased beyond $400^{\circ}C$. Also, the dry tensile shear strength increased up to the pMDI content of 5% and then decreased with its further addition but the wet tensile shear strength showed slight tendency to increase with the increase of pMDI content in the UMF resin. As the HDI content increased, however, the dry and wet tensile shear strengths of plywood consistently increased.

Synthesis and Cure Behaviors of Diglycidylether of Bisphenol-S Epoxy Resins (Diglycidylether of Bisphenol-S 에폭시 수지의 합성 및 경화거동에 관한 연구)

  • 박수진;김범용;이재락;신재섭
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.501-507
    • /
    • 2002
  • In this work, diglycidylether of bisphenol-S (DGEBS) epoxy resin was prepared by alkaline condensation of bisphenol-S (BPS) with epichlorohydrin (ECH) in the presence of NaOH catalyst. The structure of the synthesized DGEBS epoxy resin was confirmed by IR, NMR spectra, and elemental analysis. The curing reaction and glass transition temperature ($T_g$) of DGEBS epoxy resin cured with phthalic anhydride (PA) and tetrahydrophthalic anhydride (THPA) at curing agents were studied by dynamic differential scanning calorimetry (DSC). The thermal stability of the cured specimen was investigated by thermogravimetric analysis (TGA). As a result, the activation energy ($E_a$) of DGEBS/PA system was higher than that of DGEBS/THPA system, whereas $T_g$, initial decomposed temperature (IDT), and decomposition activation energy ($E_t$) of DGEBS/PA were lower than those of DGEBS/THPA. This was probably due to the fact that the crosslinking density of DGEBS/THPA was increased by ring strain of curing agent.

Influence of Curing Temperature on the Strength Properties of Fly Ash Based Cement ZERO Mortar (양생온도가 플라이애시 기반 시멘트 ZERO 모르타르의 강도에 미치는 영향)

  • Kang, Hyun-Jin;Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.665-668
    • /
    • 2008
  • Portland cement production-1.5billion tonnes yearly worldwide-contributes substantially to global atmospheric pollution($\sim$7% of total of CO$_2$ emissions). Attempts to increase the utilization of fly ash, a by-products from thermal power plant to partially replace the cement in concrete are gathering momentum. But most of fly ash is currently dumped in landfills, thus creating a threat to the environment. Therefore, In this study, influence of curing temperature(30, 60, 90$^{\circ}$C) on the strength of properties fly ash based cement ZERO mortar was investigate, measured a weight change and pH change according to each care of curing temperature. The test results that a curing at 90$^{\circ}$C is appropriate in case of the high strength concrete is required in the early-age of the curing and 60$^{\circ}$C is efficient for the case of requiring high strength at age 28 days. Furthermore pH variation and value of compressive strength are judged to correlate but change of weight is not the case.

  • PDF