Spring-back in GFR / CFR Unsymmetric Hybrid Composite Materials

유리섬유 / 탄소섬유 강화 비대칭 하이브리드 복합재료의 스프링 백

  • 정우균 (서울대학교 기계항공공학부 대학원) ;
  • 안성훈 (서울대학교 기계항공공학부) ;
  • 원명식 (국방과학연구소)
  • Published : 2005.12.01

Abstract

The fiber-reinforced composite materials have been advanced for various applications because of their excellent mechanical and electromagnetic properties. On their manufacturing processes, however, thermo-curing inherently produces the undesired thermal deformation mainly from temperature drop from the process temperature to the room temperature, so called spring-back. The spring-back must be understood especially in the hybrid composites in order to design and fabricate desired shape. In this research, (glass fiber / epoxy) + (carbon fiber / epoxy) unsymmetric hybrid composites were fabricated under various conditions such as cure cycle, laminate thickness, stacking sequence and curing sequence. Coupons were made and spring-back were measured using coordinate measuring machine (CMM). Using the Classical Lamination Theory (CLT) and finite element analysis (ANSYS), the behavior of spring-back were predicted and compared with the experimental data. The results from CLT and FEA agreed well with the experimental data. Although, the spring-back could be reduced by lowering curing temperature, at any case, the spring-back could not be removed completely.

섬유강화 복합재료는 우수한 기계적, 전자기적 물성 등으로 다양한 분야에서 응용되고 있다. 열경화성 복합재는 제작공정에서의 성형온도와 제품의 운용온도인 상온간의 온도차이로 형상의 변형(스프링 백)이 발생하게 된다. 이러한 스프링 백은 하이브리드 구조의 정밀한 형상 제작을 위해서 반드시 보정되어야할 부분이다. 본 연구에서는 유리섬유/에폭시 복합재와 카본섬유/에폭시 복합재로 구성된 비대칭 하이브리드 복합재를 경화사이클, 적층두께, 적층방법 등 다양한 조건을 적용하여 제작하고 3차원 좌표측정기를 이용하여 스프링 백을 측정하였다. 또한 고전 적층판 이론(CLT)과 유한요소해석(ANSYS)으로 스프링백을 예측하고 실험결과와 비교하였다. 고전 적층판 이론과 유한요소해석으로 예측된 스프링 백은 실험 결과와 잘 일치하였으며, 성형온도가 낮을수록 스프링 백이 감소되는 경향을 보임을 확인하였으나 근원적으로 스프링 백이 제거되지는 않았다.

Keywords

References

  1. Sarrazin, H., Kim, B. K., Ahn, S. H. and Springer, G. S., 'Effect of Processing Temperature and Layup on Springback,' Journal of Composite Materials, Vol. 29, 1995, pp. 1278-1293 https://doi.org/10.1177/002199839502901001
  2. Femlund, G., Rahman, N., Courdji, R., Bresslauer, M., Poursartip, A., Willden, K. and Melson, K., 'Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts,' Composites: Part A, Vol. 33, 2002, pp. 341-351 https://doi.org/10.1016/S1359-835X(01)00123-3
  3. Giliotti, M., Wisnom, M. R. and Potter, K. D., 'Development of curvature during the cure of AS4/8552 [0/90] unsymmetric composite plates,' Composites Science and Technology, Vol. 63, 2003, pp. 187-197. https://doi.org/10.1016/S0266-3538(02)00195-1
  4. Giliotti, M., Jacquemin, F. and Vautrin, A., 'On the maximum curvatures of 0/90 plates under thermal stress,' Composite Structures, 2004, Article in press
  5. Ito, T., Suganuma, T. and Wakashima, K., 'A micromechanics based analysis for tailoring glass fiber reinforced thermoplastic laminates with near zero coefficients of thermal expansion,' Composites Science and Technology, Vol. 60, 2000, pp. 1851-1861 https://doi.org/10.1016/S0266-3538(00)00073-7
  6. Tezvergil, A., Lassia, L. V. J. and Vallittu, P. K., 'The effect of fiber orientation on the thermal expansion coefficients of fiber reinforced composites,' Dental Materials, Vol. 19, 2003, pp. 471-477 https://doi.org/10.1016/S0109-5641(02)00092-1
  7. Evseeva, L. E. and Tanaeva, S. A., 'Thermophysical properties of epoxy composite materials at low temperatures,' Cryogenics, Vol. 35, 1995, pp. 277-279 https://doi.org/10.1016/0011-2275(95)90833-2
  8. Ressettos, J. N. and Shen, X., 'On the axial and interfacial shear stresses due to thermal mismatch in hybrid composite sheets,' Composites Science and Technology, Vol. 54, 1995, pp. 417-422 https://doi.org/10.1016/0266-3538(95)00085-2
  9. Abot, J. L., Yasmin, A., Jacobsen, A. J. and Daniel, I. M., 'In-plane mechanical, thermal and viscoelastic properties of a satin fabric carbon / epoxy composite,' Composites Science and Technology, Vol.64, 2004, pp. 263-268 https://doi.org/10.1016/S0266-3538(03)00279-3
  10. Barucci, M., Bianchini,G., Rosso,T. D., Gottardi, E., Peroni, I. and Ventura, G., 'Thermal expansion and thermal conductivity of glass fibre reinforced nylon at low temperature,' Cryogenics, Vol. 40, 2000, pp. 465-467 https://doi.org/10.1016/S0011-2275(00)00067-9
  11. Korab, J., Stefanik, P., Kavecky, S., Sebo, P. and Korb, G., 'Thermal expansion of cross-ply and woven carbon fibre copper matrix composites,' Composites Part A, Vol. 33, 2002, pp. 133-136 https://doi.org/10.1016/S1359-835X(01)00068-9
  12. Kanagaraj, S. and Pattanayak, S., 'Simultaneous measurements of thermal expansion and thermal conductivity of FRPs by employing a hybrid measuring head on a GM refrigerator,' Cryogenics, Vol. 43, 2003, pp. 451-458 https://doi.org/10.1016/S0011-2275(03)00101-2