리파아제 및 프로테이나아제와 같은 생분해성 효소는 지방산 에스테르 및 트리글리 세라이드뿐만 아니라 지방족 폴리에스테르를 가수 분해가 가능하다. 본 연구에서는 생분해성 효소가 자연 환경에서 PLA, 옥수수 전분 및 폴리에틸렌글리콜 등의 천연 지방족 폴리 물질이 분해에 중요한 역할인 생분해성을 측정했다. 본 실험에서는 PLA, PLA와 폴리에틸렌아크릴레이트, PLA 그라프트 중합체인 폴리에틸렌글리콜아크릴레이트를 사용한 PLAcoPolyethylene의 생분해성에 대해 실험하였다. 생분해성 고분자를 합성할 때. 이들의 기계적 특성은 생분해성도, 열적특성, 실시간으로 폴리머 수지의 전기적 모니터링을 통해 실험측정 결과, BOD와 PLAcoPolyethylene의 생분해도는 PLA와 그라프트 공중합된 폴리에틸렌아크릴레이트는 다른 시료보다 낮은 속도로 측정되었다.
SrBi$_{2}$Ta$_{2}$O$_{9}$ (SBT) ferroelectric thin films for nonvolatile memory were prepared on Pt/Ti/SiO$_{2}$/Si and RuO$_{2}$/SiO$_{2}$/Si substrates by RF magnetron sputtering. The dependences of crystalline and electrical properties on the lower electrode type(Pt and RuO$_{2}$) and the annealing temperatures were investigated. SBT films regardless of their electrode types showed typeical Bi layered peroviskite crystal structures. The crystalline quality of as-deposited SBT films was improved by the rapid thermal annealing at 650.deg. C for 30 sec. The remanetn polarization of 2Pr (Pr+-Pr-) of the annealed SBT films deposited on Pt/Ti/SiO$_{2}$/Si substrates were about 11 .mu.C/cm$^{2}$ and 3 .mu.C/cm$^{2}$, respectively. The leakage currents at 3 V bias voltage were about 0.8 .mu.A/cm$^{2}$ for SBT/ Pt/Ti/SiO$_{2}$/Si and about 1 .mu.A/cm$^{2}$ for SBT/RuO$_{2}$/SiO$_{2}$/Si sample. SBT films annealed at 650 .deg. C showed no degradation in Pr values after 10$^{11}$ polarization switching cycles, indicating good fatigue properties. In addition, for SBT samples deposited on Pt/Ti/SiO$_{2}$/Si, Pr values increased to more than that of initial state, suggesting the increament of leakage current caused by repeated polarization.
There is a close relationship between the performance and the heat generation of the electronic device. Heat generation causes a significant degradation of the durability and/or efficiency of the device. It is necessary to have an effective method to release the generated heat. Based on demands of the printed circuit board (PCB) manufacturing, it is necessary to develop a robust and reliable plating technique for substrates with high thermal conductivity, such as alumina ($Al_2O_3$), aluminium nitride (AlN), and silicon nitride ($Si_3N_4$). In this study, the plating of metal layers on an insulating silicon nitride ($Si_3N_4$) ceramic substrate was developed. We formed a Pd-$TiO_2$ adhesion layer and used APTES(3-Aminopropyltriethoxysilane) to form OH groups on the surface and adhere the metal layer on the insulating $Si_3N_4$ substrate. We used an electroless Ni plating without sensitization/activation process, as Pd particles were nucleated on the $TiO_2$ layer. The electrical resistivity of Ni and Cu layers is $7.27{\times}10^{-5}$ and $1.32{\times}10^{-6}ohm-cm$ by 4 point prober, respectively. The adhesion strength is 2.506 N by scratch test.
Si FEA로 부터 tip의 표면을 Co 금속으로 silicidation한 새로운 3극형 Co-silicided Si FEA를 제작하고 이의 전계 방출특성을 조사하였다. $10^{-8}Torr$의 고진공상태에서 제작된 소자의 단위 pixel(pixel 면적 : $250{\mu\textrm{m}}{\times}250{\mu\textrm{m}}$, tip 어레이 : $45{\times}45$)를 통해 측정된 turn-on 전압은 약 35V로, 아노드 전류는 $V_A=500V,\;V_G=55V$ 바이어스 아래에서 약 $1.2{\mu\textrm{A}}(0.6nA/tip)$로 나타났다. 제작된 소자는 초기 과도상태를 제외하면 장시간의 동작을 통해 전계방출 전류의 감소없이 매우 안정된 전기적 특성을 나타내었다. Co-silicided Si FFA 의 낮은 turn-on 전압과 높은 전류안전성은 Si tip 표면에 형성된 실리사이드 박막의 열화학적 안전성과 낮은 일함수에 기인하는 것으로 판단된다.
Thin-film-transistors (TFTs) that can be prepared at low temperatures have attracted much attention because of the great potential for transparent and flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited due to low field-effect mobility and rapid degradation after exposing to air. Alternative approach is the use of amorphous oxide semiconductors as a channel. Amorphous oxide semiconductors (AOSs) based TFTs showed the fast technological development, because AOS films can be fabricated at room temperature and exhibit the possibility in application like flexible display, electronic paper, and larges solar cells. Among the various AOSs, a-IGZO has lots of advantages because it has high channel mobility, uniform surface roughness and good transparency. [1] The high mobility is attributed to the overlap of spherical s-orbital of the heavy post-transition metal cations. This study demonstrated the effect of the variation in channel thickness from 30nm to 200nm on the TFT device performance. When the thickness was increased, turn-on voltage and subthreshold swing was decreased. The a-IGZO channels and source/drain metals were deposited with shadow mask. The a-IGZO channel layer was deposited on $SiO_2$/p-Si substrates by RF magnetron sputtering, where RF power is 150W. And working pressure is 3m Torr, at $O_2/Ar$ (2/28 sccm) atmosphere. The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. Finally, Al (150nm) as a gate metal was thermal-evaporated. TFT devices were heat-treated in a furnace at 250 $^{\circ}C$ and nitrogen atmosphere for 1hour. The electrical properties of the TFTs were measured using a probe-station. The TFT with channel thickness of 150nm exhibits a good subthreshold swing (SS) of 0.72 V/decade and on-off ratio of $1{\times}10^8$. The field effect mobility and threshold voltage were evaluated as 7.2 and 8 V, respectively.
Silicon carbide (SiC) is a promising material for power device applications due to its wide band gap (3.26 eV for 4H-SiC), high critical electric field and excellent thermal conductivity. The Schottky barrier diode is the representative high-power device that is currently available commercially. A field plate edge-terminated 4H-SiC was fabricated using a lift-off process for opening the Schottky contacts. In this case, Ni/Ti dual-metal contacts were unintentionally formed at the edge of the Schottky contacts and resulted in the degradation of the electrical properties of the diodes. The breakdown voltage and Schottky barrier height (SBH, ${\Phi}_B$) was 107 V and 0.67 eV, respectively. To form homogeneous single-metal Ni/4H-SiC Schottky contacts, a deposition and etching method was employed, and the electrical properties of the diodes were improved. The modified SBDs showed enhanced electrical properties, as witnessed by a breakdown voltage of 635 V, a Schottky barrier height of ${\Phi}_B$=1.48 eV, an ideality factor of n=1.04 (close to one), a forward voltage drop of $V_F$=1.6 V, a specific on resistance of $R_{on}=2.1m{\Omega}-cm^2$ and a power loss of $P_L=79.6Wcm^{-2}$.
Under concentrated illuminations, the solar cells show higher efficiencies mainly due to an increase of the open circuit voltage. In this study, InGaP/InGaAs/Ge triple-junction solar cells have been grown by a low pressure metalorganic chemical vapor deposition. Photovoltaic characteristics of the fabricated solar cells are investigated with a class A solar simulator under concentrated illuminations from 1 to 100 suns. Ideally, the open circuit voltage should increase with the current level when maintained at the same temperature. However, the fabricated solar cells show degraded open circuit voltages under high concentrations around 100 suns. This means that the heat sink design is not optimized to keep the cell temperature at $25^{\circ}C$. To demonstrate the thermal degradation, changes of the device performance are investigated with different bonding conditions and heat sink materials.
다층카본나노튜브(MWCNT)가 강화된 폴리에틸렌에틸아크릴레이트(EEA) 나노복합체를 용융혼합법과 용액혼합법으로 제조하였다. 카본나노튜브의 형태 및 함량변화에 따른 기계적, 열적, 전기적 특성을 조사하였다. MWCNT의 함량이 증가함에 따라 인장강도, 모듈러스는 증가하였고, 파단신장률은 감소하였다. 할로우 형태의 MWCNT가 일반적인 MWCNT에 비해 우수한 인장강도 및 파단신장률을 나타내었다. MWCNT 함량이 증가함에 따라 약 $40^{\circ}C$의 열분해온도의 향상을 보였다. 전기적 특성은 용융혼합법의 경우가 가장 높은 전기저항 특성을 나타내었고, 용액혼합법의 경우 일반형 MWCNT가 할로우 MWCNT보다 낮은 체적저항을 보였다. MWCNT의 함량이 증가할수록 파단면 위로 돌출되는 CNT 수가 증가하였고, 인장변형을 가하면 표면 위로 돌출되는 CNT 수와 길이가 크게 증가하였다. 용융혼합된 시편이 용액혼합에 비해 돌출된 CNT의 수와 길이가 현격히 낮았다.
The 3D interconnect technologies have been appeared, as the density of Integrated Circuit (IC) devices increases. Through Silicon Via (TSV) process is an important technology in the 3D interconnect technologies. And the process is used to form a vertically electrical connection through silicon dies. This TSV process has some advantages that short length of interconnection, high interconnection density, low electrical resistance, and low power consumption. Because of these advantages, TSVs could improve the device performance higher. The fabrication process of TSV has several steps such as TSV etching, insulator deposition, seed layer deposition, metallization, planarization, and assembly. Among them, TSV metallization (i.e. TSV filling) was core process in the fabrication process of TSV because TSV metallization determines the performance and reliability of the TSV interconnect. TSVs were commonly filled with metals by using the simple electrochemical deposition method. However, since the aspect ratio of TSVs was become a higher, it was easy to occur voids and copper filling of TSVs became more difficult. Using some additives like an accelerator, suppressor and leveler for the void-free filling of TSVs, deposition rate of bottom could be fast whereas deposition of side walls could be inhibited. The suppressor was adsorbed surface of via easily because of its higher molecular weight than the accelerator. However, for high aspect ratio TSV fillers, the growth of the top of via can be accelerated because the suppressor is replaced by an accelerator. The substitution of the accelerator and the suppressor caused the side wall growth and defect generation. The suppressor was used as Single additive electrodeposition of TSV to overcome the constraints. At the electrochemical deposition of high aspect ratio of TSVs, the suppressor as single additive could effectively suppress the growth of the top surface and the void-free bottom-up filling became possible. Generally, copper was used to fill TSVs since its low resistivity could reduce the RC delay of the interconnection. However, because of the large Coefficients of Thermal Expansion (CTE) mismatch between silicon and copper, stress was induced to the silicon around the TSVs at the annealing process. The Keep Out Zone (KOZ), the stressed area in the silicon, could affect carrier mobility and could cause degradation of the device performance. Cobalt can be used as an alternative material because the CTE of cobalt was lower than that of copper. Therefore, using cobalt could reduce KOZ and improve device performance. In this study, high-aspect ratio TSVs were filled with cobalt using the electrochemical deposition. And the filling performance was enhanced by using the suppressor as single additive. Electrochemical analysis explains the effect of suppressor in the cobalt filling bath and the effect of filling behavior at condition such as current type was investigated.
전기방사 방법으로 sulfonated poly(ether ether ketone) (SPEEK) 나노섬유를 제조하고, 압축성형법으로 고분자 전해질막 연료전지(polymer electrolyte membrane fuel cell, PEMFC)용 나노섬유막을 제조하였다. SPEEK의 최대 설폰화율은 95% 이었고 초기 열분해 온도는 약 $280^{\circ}C$로 PEEK 보다 낮았으며 접촉각은 설폰화도가 증가함에 따라 감소하였다. 전기방사 나노섬유의 최적 인가전압, 유속, 방사거리(tip to collector distance, TCD) 및 농도는 각각 22 kV, 0.3 mL/hr, 5 cm, 23 wt% 이었고 평균 섬유직경은 47.6 nm 이었다. 한편, SPEEK 이온교환 나노섬유막의 함수율 및 이온교환용량은 설폰화 시간과 설폰화제 함량이 증가함에 따라 증가하였으며 최적값은 각각 20%, 2.03 meq/g으로 Nafion 117 보다 우수하였다. 막의 전기저항은 설폰화 시간이 증가함에 따라 감소하였고 그 값은 0.58~0.06 ${\Omega}{\cdot}cm^2$로 측정되었다. 또한 막의 수소이온전도도는 설폰화 시간이 증가함에 따라 증가하였으며 최대 0.099 S/cm로 Nafion 117 보다 우수하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.