• Title/Summary/Keyword: Thermal and Metallurgical Behavior

Search Result 28, Processing Time 0.023 seconds

Decomposition Behavior of Secondary Solidification Phase During Heat Treatment of Squeeze Cast Al-Cu-Si-Mg (용탕단조 Al-Cu-Si-Mg합금의 열처리시 제2응고상의 분해거동)

  • Kim, Yu-Chan;Kim, Do-Hyang;Han, Yo-Sub;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.560-568
    • /
    • 1997
  • The dissolution behavior of secondary solidification phases in squeeze cast Al-3.9wt%Cu-1.5wt%Si-1.0wt%Mg has been studied using a combination of optical microscope, image analyzer, scanning electron microscope(SEM), energy dispersive spectrometer(EDS), X-ray diffractometer(XRD) and differential thermal analyzer (DTA). Special emphasis was placed on the investigation of the effects of the nonequilibrium heat treatment on the dissolution of the second solidification phases. Ascast microstructure consisted of primary solidification product of ${\alpha}-Al$ and secondary solidification products of $Al_2Cu$, $Mg_2Si$ and $Al_2CuMg$. Equilibrium and non-equilibrium solution treatments were carried out at the temperatures of $495^{\circ}C$, $502^{\circ}C$ and $515^{\circ}C$ for 3 to 5 hours. The amount of the dissolved secondary phases increased with increasing solution treatment temperature, for example, area fractions of $Al_2Cu$, $Mg_2Si$ and $Al_2CuMg$ were approximately 0%, 1.6% and 4.2% after solution treatment at $495^{\circ}C$ for 5hours, and were approximately 0%, 0.36% and 2% after solution treatment at $515^{\circ}C$ for 5hours. The best combination of tensile properties was obtained when the as-cast alloy was solution treated at $515^{\circ}C$ for 3hours followed by aging at $180^{\circ}C$ for 10 hours. Detailed DTA and TEM study showed that the strengthening behavior during aging was due to enhanced precipitation of the platelet type fine ${\theta}'$ phase.

  • PDF

Thermal characteristics of $W_{67}N_{33}$/GaAs structure (PECVD방법으로 형성한 $W_{67}N_{33}$/GaAs구조의 열적 특성)

  • Lee, Se-Jeong;Hong, Jong-Seong;Lee, Chang-U;Lee, Jong-Mu;Kim, Yong-Tae;Min, Seok-Gi
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.443-450
    • /
    • 1993
  • Self-alignment gatc Schottky contact structure on Si- implanted GaAs was formed by plasma enhanced chemical vapor dcposirion. Tungsten nitride thin films (ahclut 1600$\AA$) \vcre dopositcd on GaAs at $350^{\circ}C$ in order to fahricarc GaAs 1Cs and ttwn rapidly annealed at $750^{\circ}C$ to $900^{\circ}C$. Thermal charac tcristics of PECVD)-$W_{67}N_{43}$/GaAs structure were investigated by X-ray diffraction, photolumintesccnce. and optical deep level transient specrroscopy. Results revealed that $W_{67}N_{33}$ gate was more thermally sta ble with GaAs substrate than W gate and Si atoms implanted In $W_{67}N_{33}$/GaAs structure became morr active than those In W/GaAs after annealing. I-V characteristics of $W_{67}N_{33}$/GaAs diod c exhibired a nearly ideal diode behavior. The termal stability of $W_{67}N_{33}$/GaAs diode was better than that of W/GaAs diode with the post annealing at temperatures from 800 to $900^{\circ}C$ for 20s without As overpressure.

  • PDF

Effects of Microstructural States on Magnetic Barkhausen Noise Behavior in the Weld Heat-Affected Zone of Reactor Pressure Vessel Steel (원자로압력용기강 용접열영향부의 미세조직 변화가 Magnetic Barkhausen Noise 거동에 미치는 영향)

  • Kim, Joo-Hag;Yoon, Eui-Pak;Moon, Jong-Gul;Park, Duck-Gun;Hong, Jun-Hwa
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.4
    • /
    • pp.292-303
    • /
    • 1998
  • Recent study has demonstrated that some magnetic properties are sensitive to the microstructural state of material. The ASTM A 508 Gr. 3 reactor pressure vessel steel has various microstructural changes including martensitic and bainitic phases, and various sizes of grain and precipitates in the weld heat-affected zone (HAZ). To correlate the microstructural state with Barkhausen noise (BN), specimens were prepared through simulating various weld thermal cycles using a thermal simulator. The conventional magnetic properties, i.e. coercive force, remanence and maximum induction, did not change significantly, whereas the BN amplitude and energy during a magnetization cycle changed markedly with microstructural state. The BN increased with increasing grain and carbide sizes, and the tempered bainite structure showed higher BN parameter than tempered martensite.

  • PDF

Thermal Stability and Behavior of Isothermal Crystallization in Fe-P-C-B-(AI-Ge) Amorphous Alloys (Fe-P-C-B-(AI-Ge)계 비정질합금의 열적 안정성과 등온결정화 거동)

  • Jeon, U-Yong;Guk, Jin-Seon;Bae, In-Seong;Seol, Gyeong-Won
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.1026-1030
    • /
    • 1998
  • Thermal properties of Fe- base amorpous alloys were investigated. $Fe_{80}P_6C_{12}B_{12}$ and $Fe_{73}P_{11}C_6B_4AI_4Ge_2$ amorphous alloys were fabricated by melt spinning method and thermal analysis was done by differential scanning calorimeter. After isothermal crystallization. the Avrami exponents of $Fe_{80}P_6C_{12}B_{12}$ and $Fe_{73}P_{11}C_6B_4AI_4Ge_2$ amorphous alloys were 1.8-2.2 and 2.5-4.0, respectively. It means the former alloy shows diffusion controlled growth and the latter one shows interface controlled growth. For $Fe_{80}P_6C_{12}B_{12}$ and $Fe_{73}P_{11}C_6B_4AI_4Ge_2$ amorphous alloys. the activation energies of isothermal crystallization was 353 and 371kJlmol. Also the activation energies of nucleation and growth were 301, 324kJlmol and 273. 30lkJ/mol, respectively. Thus $Fe_{73}P_{11}C_6B_4AI_4Ge_2$ amorphous alloy is considered to be more stable than $Fe_{73}P_{11}C_6B_4AI_4Ge_2$ amorphous alloy.

  • PDF

Material Life Cycle Assessments on Mg2NiHx-CaO Composites (Mg2NiHx-CaO 수소 저장 복합물질의 물질 전과정 평가)

  • HWANG, JUNE-HYEON;SHIN, HYO-WON;HONG, TAE-WHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.1
    • /
    • pp.8-18
    • /
    • 2022
  • With rapid industrialization and population growth, fossil fuel use has increased, which has a significant impact on the environment. Hydrogen does not cause contamination in the energy production process, so it seems to be a solution, but it is essential to find an appropriate storage method due to its low efficiency. In this study, Mg-based alloys capable of ensuring safety and high volume and hydrogen storage density per weight was studied, and Mg2NiHx synthesized with Ni capable of improving hydrogenation kinetics. In addition, in order to improve thermal stability, a hydrogen storage composite material synthesized with CaO was synthesized to analyze the change in hydrogenation reaction. In order to analyze the changes in the metallurgical properties of the materials through the process, XRD, SEM, BET, etc. were conducted, and hydrogenation behavior was confirmed by TGA and hydrogenation kinetics analysis. In addition, in order to evaluate the impact of the process on the environment, the environmental impact was evaluated through "Material Life Cycle Assessments" based on CML 2001 and EI99' methodologies, and compared and analyzed with previous studies. As a result, the synthesis of CaO caused additional power consumption, which had a significant impact on global warming, and further research is required to improve this.

Effects of Catalyst Dispersion for Reaction Energy Control on Eco-AZ91 MgH2 (Eco-AZ91 MgH2의 반응열 제어에 미치는 촉매 분산 효과)

  • SOOSUN LEE;SONG SEOK;TAE-WHAN HONG
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.631-640
    • /
    • 2023
  • This study selected Eco-AZ91 MgH2, which shows high enthalpy as a material for this purpose, as the basic material, and analyzed the change in characteristics by synthesizing TiNi as a catalyst to control the thermodynamic behavior of MgH2. In addition, the catalyst dispersion technology using graphene oxide (GO) was studied to improve the high-temperature aggregation phenomenon of Ni catalyst and to secure a source technology that can properly disperse the catalyst. XRD, SEM, and BET analysis were conducted to analyze the metallurgical properties of the material, and TGA and DSC analysis were conducted to analyze the dehydrogenation temperature and calorific value, and the correlation between MgH2, TiNi catalyst, and GO reforming catalyst was analyzed. As a result, the MgH2-5 wt% TiNi at GO composite could lower the dehydrogenation temperature to 478-492 K due to the reduction of the catalyst aggregation phenomenon and the increase in the reaction specific surface area, and an experimental result for the catalyst dispersion technology by GO could be ensured.

Spherodization of Granuled Cr2O3 Fine Ceramic Powder by Plasma Spray (플라즈마 분사 처리에 의한 Cr2O3 조립분말의 구상화에 대한 연구)

  • Lee, Dong Won;Lee, Hak Sung;Yu, Ji-Hun;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.92-97
    • /
    • 2016
  • Spray dried $Cr_2O_3$ powder having an agglomerated structure of particles was twice treated into a plasma flame to increase its apparent density. The powder subjected to the first densification treatment did not show the entirely melted state keeping inner particle hollows, and it was fully melted after the second processing only. The powder size as a result of the second treatment decreased, and the apparent density as well as flowability were increased due to melting and surface smoothing effects. But a part of particles after the second densified treatment showed the hollow structure, especially those which were above $30{\mu}m$ in size. This densification behavior of the powder has been qualitatively discussed in terms of the thermal conductivity and inner gas pressure within aggregates exposed to the plasma flame.

Evaluation of Bonding Properties of Epoxy Solder Joints by High Temperature Aging Test (고온 시효 시험에 따른 Epoxy 솔더 접합부의 접합 특성 평가)

  • Kang, Min-Soo;Kim, Do-Seok;Shin, Young-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.6-12
    • /
    • 2019
  • Bonding properties of epoxy-containing solder joints were investigated by a high temperature aging test. Specimens were prepared by bonding an R3216 standard chip resistor to an OSP-finished PCB by a reflow process with two basic types of solder (SAC305 & Sn58Bi) pastes and two epoxy-solder (SAC305+epoxy & Sn58Bi+epoxy) pastes. In all epoxy solder joints, an epoxy fillet was formed in the hardened epoxy, lying around the outer edge of the solder joint, between the chip and the Cu pad. In order to analyze the bonding characteristics of solder joints at high temperatures, a high-temperature aging test at $150^{\circ}C$ was carried out for 14 days (336 h). After aging, the intermetallic compound $Cu_6Sn_5$ was found to have formed in the solder joint on the Cu pad, and the shear stress on the conventional solder joint was reduced by a significant amount. The reason that the shear force did not decrease much, even though in epoxy solder, was thatbecause epoxy hardened at the outer edge of the supported solder joints. Using epoxy solder, strong bonding behavior can be ensured due to this resistance to shear force, even in metallurgical changes such as those where intermetallic compounds form at solder joints.