DOI QR코드

DOI QR Code

Material Life Cycle Assessments on Mg2NiHx-CaO Composites

Mg2NiHx-CaO 수소 저장 복합물질의 물질 전과정 평가

  • HWANG, JUNE-HYEON (Department of Energy Materials and Engineering, Korea National University of Transportation) ;
  • SHIN, HYO-WON (Department of Energy Materials and Engineering, Korea National University of Transportation) ;
  • HONG, TAE-WHAN (Department of Energy Materials and Engineering, Korea National University of Transportation)
  • 황준현 (한국교통대학교 응용화학에너지공학부 에너지소재공학전공) ;
  • 신효원 (한국교통대학교 응용화학에너지공학부 에너지소재공학전공) ;
  • 홍태환 (한국교통대학교 응용화학에너지공학부 에너지소재공학전공)
  • Received : 2021.12.28
  • Accepted : 2022.02.15
  • Published : 2022.02.28

Abstract

With rapid industrialization and population growth, fossil fuel use has increased, which has a significant impact on the environment. Hydrogen does not cause contamination in the energy production process, so it seems to be a solution, but it is essential to find an appropriate storage method due to its low efficiency. In this study, Mg-based alloys capable of ensuring safety and high volume and hydrogen storage density per weight was studied, and Mg2NiHx synthesized with Ni capable of improving hydrogenation kinetics. In addition, in order to improve thermal stability, a hydrogen storage composite material synthesized with CaO was synthesized to analyze the change in hydrogenation reaction. In order to analyze the changes in the metallurgical properties of the materials through the process, XRD, SEM, BET, etc. were conducted, and hydrogenation behavior was confirmed by TGA and hydrogenation kinetics analysis. In addition, in order to evaluate the impact of the process on the environment, the environmental impact was evaluated through "Material Life Cycle Assessments" based on CML 2001 and EI99' methodologies, and compared and analyzed with previous studies. As a result, the synthesis of CaO caused additional power consumption, which had a significant impact on global warming, and further research is required to improve this.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구(2019R1F1A1041405)와 교육부에서 지원하는 한국 기초과학연구원보조금(2019R1A6C1010047)과 중소벤처기업부가 부여한 재원(S3045542)에 의해 수행되었으며, 이에 감사드립니다

References

  1. Sachin P. Shet, S. S. Priya, K. Sudhakar, and M. Tahir, "A review on current trends in potential use of metal-organic framework for hydrogen storage", International Journal of Hydrogen Energy, Vol. 46, No. 21, 2021, pp. 11782-11803, doi: https://doi.org/10.1016/j.ijhydene.2021.01.020.
  2. I. A. Hassan, Haitham S. Ramadan, Mohamed A. Saleh, and D. Hissel, "Hydrogen storage technologies for stationary and mobile applications: review, analysis and perspectives", Renewable and Sustainable Energy Reviews, Vol. 149, 2021, pp. 111311, doi: https://doi.org/10.1016/j.rser.2021.111311.
  3. S. Louis and A. Zuttel. "Hydrogen-storage materials for mobile applications", Materials for Sustainable Energy, 2011, pp. 265-270, doi: https://doi.org/10.1142/9789814317665_0038.
  4. "How hydrogen energy storage works", HYDROGEN ENERGY STORAGE, Retrieved from https://energystorage.org/why-energy%20storage/technologies/hydrogen-energystorage/.
  5. S. Liu, J. Liu, X. Liu, J. Shang, L. Xu, R. Yu, and J. Shuim, "Hydrogen storage in incompletely etched multilayer Ti2CT x at room temperature", Nature Nanotechnology, Vol. 16, 2021, pp. 331-336, doi: https://doi.org/10.1038/s41565-020-00818-8.
  6. M. B. Ley, L. H. Jepsen, Y. S. Lee, Y. W. Cho, J. M. B. Colbe, M. Dornheim, M. Rokni, J. O. Jensen, M. Sloth, Y. Filinchuk, J. E. Jorgensen, F. Besenbacher, and T. R. Jensen, "Complex hydrides for hydrogen storage-new perspectives", Materials Today, Vol. 17, No. 3, 2014, pp. 122-128, doi: https://doi.org/10.1016/j.mattod.2014.02.013.
  7. J. S. Yu, J. H. Han, H. W. Sin, and T. W. Hong, "Fabrication and evaluation hydrogenation absorbing on Mg2NiHx10 wt% CaF2 composites", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 6, 2020, pp. 553-557, doi: https://doi.org/10.7316/KHNES.2020.31.6.553.
  8. Y. Fu, Z. Ding, S. Ren, X. Li, S. Zhou, L. Zhang, W. Wang, L. Wu, Y. Li, and S. Han, "Effect of in-situ formed Mg2Ni/Mg2NiH4 compounds on hydrogen storage performance of MgH2", International Journal of Hydrogen Energy, Vol. 45, No. 52, 2020, pp. 28154-28162, doi: https://doi.org/10.1016/j.ijhydene.2020.03.089.
  9. S. Seok, K. Shin, S. Y. Kweon, S. C. Ur, Y. G. Lee, and T. W. Hong, "Evaluations of microstructure and hydrogenation properties on Mg2NiHx", Trans Korean Hydrogen New Energy Soc, Vol. 16, No. 3, 2005, pp. 238-243.
  10. J. K. Lee and S. K. Kim, "Effect of CaO addition on the ignition resistance of Mg-Al alloys", Materials Transactions, Vol. 52, No. 7, 2011, pp. 1483-1488, doi: https://doi.org/10.2320/matertrans.M2010397.
  11. H. W. Shin, J. H. Hwang, E. A. Kim, and T. W. Hong, "Evaluation of hydrogenation kinetics and life cycle assessment on Mg2NiHx-CaO composites", Materials, Vol. 14, No. 11, 2021, pp. 2848, doi: https://doi.org/10.3390/ma14112848.
  12. S. H. Lee and Y. M. Jo, "Review of national policies on the utilization of waste metal resources", KIC News, Vol. 13, No. 1, pp. 2-9, Retrieved from https://www.cheric.org/research/tech/periodicals/view.php?seq=809873.
  13. M. G. Kim, J. T. Son, and T. W. Houng, "Evaluation of TiN-Zr hydrogen permeation membrane by MLCA (Material life cycle assessment)", Clean Technology, Vol. 19, No. 1, 2018, pp. 27-30, doi: https://doi.org/10.7464/ksct.2018.24.1.009.
  14. Z. G. Huang, Z. P. Guo, A. Calka, D. Wexler, C. Luckey, and H. K. Liu, "Effects of iron oxide (Fe2O3, Fe3O4) on hydrogen storage properties of Mg-based composites", J. Alloys Compd, Vol. 422, No. 1-2, 2006, pp. 299-304, doi: https://doi.org/10.1016/j.jallcom.2005.11.074.
  15. G. M. Lee and A. Inaba. "Life cycle assessment ISO14040 series practical guidelines", APEC Secretariat, 2004, Retrieved from https://www.kncpc.or.kr/hq/promote_press01.asp?id=28&page=12.
  16. A. Maranda, R. Zrobok, B. Florczak, and B. Kukfisz "Research paper/Praca doswiadczalna determination of environmental burden of combustion products of pyrotechnic mixtures to quarrying operations Okreslenie obciazen srodowiskowych produktami spalania mieszanin pirotechnicznych stosowanych do urabiania", High Energy Materials Journal, Vol. 11, No. 1, 2019, pp. 66-75, Retrieved from https://ipo.lukasiewicz.gov.pl/wydawnictwa/wp-content/uploads/2021/04/HEM_0140_E-1.pdf.
  17. L. Silvestri, A. Forcina, C. Silvestri, and G. Ioppolo, "Life cycle assessment of sanitaryware production: a case study in Italy", Journal of Cleaner Production, Vol. 251, No. 2020, pp. 119708, doi: https://doi.org/10.1016/j.jclepro.2019.119708.
  18. S. K. Sahoo, S. Parveen, and J. J Panda, "The present and future of nanotechnology in human health care", Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 3, No. 1, 2007, pp. 20-31, doi: https://doi.org/10.1016/j.nano.2006.11.008.
  19. J. H. Hwang, et al. "Hydrogenation kinetics of Mg2NiHx-CaO Composites", Korean Journal of Materials Research, submitting.
  20. J. Zhang, S. Yan, L.P. Yu, X.J. Zhou, T. Zhou, and P. Peng, "Enhanced hydrogen storage properties and mechanisms of magnesium hydride modified by transition metal dissolved magnesium oxides", International Journal of Hydrogen Energy, Vol. 43, No. 48, 2018, pp. 21864-21873, doi: https://doi.org/10.1016/j.ijhydene.2018.10.017.
  21. M. W, Jung, J. H. Park, K. W. Cho, K. I. Kim, J. H .Chol, S. H. Kim, and T. W. Hong, "Hydrogenation properties of MgHx-V2O5 composites by hydrogen induced mechanical alloying", Trans Korean Hydrogen New Energy Soc, Vol. 21, No. 1, 2010, pp. 58-63. Retrieved from https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001426492.
  22. H. W. Shin, J. J. Hwang, E. A. Kim, and T. W. Hong, "Material life cycle assessment on Mg2NiHx-5 wt% CaO hydrogen storage composites", Clean Technology, Vol, 2, No. 2, 2021, pp. 107-114, doi: https://doi.org/10.7464/ksct.2021.27.2.107.
  23. S. J. Jeong, J. Y. Lee, J. S. Shon, and T. Hur, "Life cycle assessments of long-term and short-term environmental impacts for the incineration of spent Li-ion batteries (LIBs)", J. Korean Ind. Eng. Chem, Vol. 17, No. 2, 2006, pp. 163-169.
  24. W. Jawjit, C. Kroeze, W. Soontaranun, and L. Hordijk, "An analysis of the environmental pressure exerted by the eucalyptus-based kraft pulp industry in Thailand", Environment, Development and Sustainability Vol. 8, 2006, pp. 289-311, doi: https://doi.org/10.1007/s10668-005-9019-y.
  25. S. Ramakrishnan and P. Koltun, "Global warming impact of the magnesium produced in China using the Pidgeon process", Resources, Conservation and Recycling, Vol. 42, No. 1, 2004, pp. 49-64, doi: https://doi.org/10.1016/j.resconrec.2004.02.003.
  26. G. S. Kim, B. W. Kim, and T, J . Lee, "Adsorption characteristics of CaO for COnull", pp. 133-138.
  27. H. D. Shin, "'Carbon shadow' follows the future energy hydrogen", JoongAng, 2020, Retrieved from https://www.joongang.co.kr/article/23950531#home.