• Title/Summary/Keyword: Thermal analysis characteristics

Search Result 2,348, Processing Time 0.039 seconds

Development of three-dimensional thermal oxidation process simulator and analysis the characteristics of multi-dimensional oxide growth (1 Giga급 집적회로 구현을 위한 3차원 산화 공정 시뮬레이터 개발 및 산화층 성장 특성 분석에 관한 연구)

  • 이준하;황호정
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.8
    • /
    • pp.107-118
    • /
    • 1995
  • Three-dimensional simulator for thermal oxidation process is developed. The simulator is consisted by two individual module, one is analytic-model module and the other is numerical-model module. The analytic-model which uses simple complementary-error function guarantees fast calculation in prediction of multi-dimensional oxidation process. The numerical-model which is based on boundary element method (BEM), has a good accuracy and suitable for various process conditions. The results of this study show that oxide growth is retarded at the corner of hole structure and enhanced at the corner of island structure. These effects are reson of different distribution of oxidant diffusion and mask stress. The utility of models and simulator developed in this study is demonstrated by using it to predict not only traditional shape of LOCOS but also process effects in small geometry.

  • PDF

Numerical analysis in oscillating flow considering orientation of porous media regenerator (다공성 재생기의 방향성을 고려한 왕복유동 수치해석)

  • Yang, Mun-Heum;Park, Sang-Jin;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1668-1678
    • /
    • 1997
  • Numerical analyses were performed to investigate the characteristics of regenerator in oscillating flow by using moving boundary method and Darcy model. In this work, periodic adiabatic boundary condition was suggested as the boundary condition of adiabatic part so that the effects of the thermal inertia of the wall could be considered. In carrying out numerical analyses, two models were applied and compared. One called isotropic model has the same thermal conductivity in radial and axial directions within a porous media. The other called aeolotropic model has different conductivity in each directions. Isotropic model could not show the advantage of energy reduction which needs to maintain constant wall temperature difference between heater and cooler. But aeolotropic model could simulate the reduction of energy consumption.

Slim Design for Membrane Type LNGC using 3X-Board (3X-Board를 적용한 멤브레인형 LNGC의 Slim화 설계)

  • Ryu, Sung-Heon;Cho, Jin-Rae;Ha, Mun-Keun;Lee, Joong-Nam
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1280-1285
    • /
    • 2003
  • In the developement of LNG cargo, the current concern focuses on the slim design of insulation layer to increase the LNG carrying capacity. Not only thermal stability with BOR(Boil-Off Rate) but structual stability against the LNG weight and the sloshing phenomenon must be also considered. In this paper, we applied the stitched sandwitch composite called the 3X-Board which is stitched through the core thickness direction using glass fiber to the LNG cargo. We evaluated the thermal and structural characteristics of 3X-Board by changing the core thickness and the material, in order to explore a validity for the slim design through the finite element analysis.

  • PDF

Structure Behavior of Sputtered W-B-C-N Thin Film for various nitrogen gas ratios (PVD법으로 증착한 W-B-C-N 박막의 질소량에 따른 구조변화 연구)

  • Song, Moon-Kyoo;Lee, Chang-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.109-110
    • /
    • 2005
  • We have suggested sputtered W-C-N thin film for preventing thermal budget between semiconductor and metal. These results show that the W-C-N thin film has good thermal stability and low resistivity. In this study we newly suggested sputtered W-B-C-N thin diffusion barrier. In order to improve the characteristics, we examined the impurity behaviors as a function of nitrogen gas flow ratio. This thin film is able to prevent the interdiffusion during high temperature (700 to $1000^{\circ}C$) annealing process and has low resistivity ($\sim$200$\mu{\Omega}-cm$). Through the analysis of X-Ray diffraction, resistivity and XPS, we studied structure behavior of W-B-C-N diffusion barrier.

  • PDF

Combustion Characteristics of Hydrogen by the Thermodynamic Properties Analysis

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.84-90
    • /
    • 2015
  • Hydrogen has some remarkably high values of the key properties for transport processes, such as kinematic viscosity, thermal conductivity and diffusion coefficient. Hydrogen, as an energy medium, has some distinct benefits for its high efficiency and convenience in storage, transportation and conversion. Hydrogen has much wider limits of flammability in air than methane, propane or gasoline and the minimum ignition energy is about an order of magnitude lower than for other combustibles. Statistical thermodynamics provides the relationships that we need in order to bridge this gap between the macro and the micro. Our most important application will involve the calculation of the thermodynamic properties of the ideal gas.

Evaluation on the Formability of Corrugated Membrane panels of a LNG Storage Tank (LNG 저장탱크용 멤브레인의 성형성 평가)

  • 박구환;변상규;김성원;강범수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.98-101
    • /
    • 1997
  • Membrane panels for LNG(Liquid Natural Gas) tank are formed to corrugared ones by press forming. The environment of LNG tank is so severe that the service temperature is -162$^{\circ}C$ and the room temperature is 20$^{\circ}C$. The thermal deformation derived by the severe temperature change is absorbed by the corrugations of the membrane panels. In this paper the formability of stainless steel membrane panel is examined by the finite element analysis. Two corrugated shapes are suggested, and analyzed to obtain a sound absorption performance of the thermal distortion. Also the design considers forming characteristics and economy of production.

  • PDF

A Pattern Analysis of Impact Signal in Reactor Coolant System (원전 원자로냉각재계통 내의 충격신호 유형 분석)

  • Jung, Chang-Gyu;Lee, Kwang-Hyun;Lee, Jae-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.181-184
    • /
    • 2014
  • Loose Parts Monitoring System(LPMS) monitors loosened or detached parts and foreign parts inside the pressure boundary of a reactor coolant system (RCS). It is difficult to discriminate valid signal from LPMS alarms at full power since the signal pattern by thermal shocks and structure friction are similar to those by loose metal impacts. In addition, It is more difficult to discriminate the impact signals induced by the rod driving, sensor hard-line movement and loosened component since they have similar frequency characteristics with valid signals. This paper classifies the signal patterns by analyzing actual LPMS signal captured during nuclear power plant operation.

  • PDF

Evaluation of the required cooling capacity of the Cryocooler in the vacuum system (극저온냉동기 직냉형 진공시스템의 냉동부하 평가)

  • 홍용주;박성제;김효봉;최영돈
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.171-173
    • /
    • 2003
  • The cryostat or dewar have been widely used for making and maintaining cryogenic and vacuum environments. The thermal performances of such cryogenic vacuum system mainly depend on the radiation heat transfer between hot and cold surface The characteristics of radiation heat transfer are complicated, because amounts of heat transfer depend on view factor, emissivities, and areas of thermal elements. In this study, the analysis of the radiation heat transfer in the small cryogenic vacuum system was performed using the surface to surface radiation model for evaluation of the required cooling capacity of the cryocooler.

  • PDF

Microstructure change of large cast-forged product by heat treatment conditions (열처리 공정이 대형 주단조품의 조직변화에 미치는 영향)

  • Lee, M.W.;Lee, Y.S.;Lee, S.W.;Lee, D.H.;Kim, S.S.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.102-106
    • /
    • 2009
  • Thermal energy control is a important factor in a large size casting and forging. Good control of thermal energy makes characteristics and defect of large cast-forged part, such as large sized forged shell. We have studied about not only large size ring forging process and after heat treatment by FEM simulation. Also, changes of temperature and microstructure for forged shell were predicted. Therefore, we can choose the proper heat treatment condition by FEA. The sectional properties confirmed by practical experiment and evaluation have presented possibilities of process design by computational analysis.

  • PDF

Fatigue Life Evaluation on Compressive & Tensional Residual Stress Induced Materials and Residual Stress Measurement using Hole Drilling Method (HDM을 이용한 잔류응력측정과 압축·인장 잔류응력이 인가된 재료의 피로수명평가)

  • Baek, Seung Yeb
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.43-48
    • /
    • 2013
  • This paper Investigated the characteristics of residual stress in weld is composed of typical specimens, are investigated by using three dimensional thermal elasto-plastic FEM analysis. Numerically calculated residual stresses in the gas welds were then compared with experimental results obtained by the hole-drilling method. Using the stress amplitude (${\sigma}a$)R at the hot spot point of gas weld, the relations obtained as the fatigue test results for typical specimens having various dimensions and shapes were systematically rearranged to obtain the (${\sigma}a$)R-Nf relationship. It was found that more systematic and accurate evaluation of the fatigue strength of plug- and ring-type gas-welded joints can be achieved by using (${\sigma}a$)R.