• Title/Summary/Keyword: Thermal analysis characteristics

Search Result 2,348, Processing Time 0.037 seconds

Flexible and Embedded Packaging of Thinned Silicon Chip (초 박형 실리콘 칩을 이용한 유연 패키징 기술 및 집적 회로 삽입형 패키징 기술)

  • 이태희;신규호;김용준
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • A flexible packaging scheme, which includes chip packaging, has been developed using a thinned silicon chip. Mechanical characteristics of thinned silicon chips are examined by bending tests and finite element analysis. Thinned silicon chips (t<30 $\mu\textrm{m}$) are fabricated by chemical etching process to avoid possible surface damages on them. And the chips are stacked directly on $Kapton^{Kapton}$film by thermal compressive bonding. The low height difference between the thinned silicon chip and $Kapton^{Kapton}$film allows electroplating for electrical interconnection method. Because the 'Chip' is embedded in the flexible substrate, higher packaging density and wearability can be achieved by maximized usable packaging area.

  • PDF

Thermal and Geometrical Effect on the Motor Performance of Composite Squirrel Cage Rotor (복합재료 농형 회전자의 열적, 기하학적 특성이 모터 성능에 미치는 효과)

  • 장승환;이대길
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.77-89
    • /
    • 2001
  • Since the critical whirling vibration frequency of high speed built-in type motor spindle systems is dependent on the rotor mass of the built-in motor and the spindle specific bending modulus, the rotor and the shaft were designed using magnetic powder containing epoxy and high modulus carbon fiber epoxy composite, respectively. In order to increase the amount of the magnetic flux of the composite squirrel cage rotor of an AC induction motor, a steel core was inserted into the composite rotor. From the magnetic analysis, the optimal configurations of steel core and conductor bars for the dynamic characteristics of the rotor system were determined and proposed. The temperature dependence of composite squirrel cage rotor materials was investigated by various experiments such as TMA, DMA and VSM.

  • PDF

Vibration Exciter Design for Flow Resonance with a Displacement Estimator Using Strain Gage (스트레인 게이지 변위추정 센서를 사용한 유동공진 가진기 설계)

  • Nam, Yun-Su;Choe, Jae-Hyeok;Gang, Byeong-Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1874-1881
    • /
    • 2002
  • Heat dissipation technology using the flow resonant phenomenon is a kind of a new concept in the heat transfer area. A vibration exciter is needed to enhance air flow mixing which has the natural shedding frequency of thermal system. A mechanical vibrating device for the air flow oscillation is introduced, which is driven by a moving coil actuator with a displacement estimator using strain gage. An analytical dynamic model for this mechanical vibration exciter is presented and its validity is checked by the comparison with experimental data. Values of some unknown system parameters in the analytic model are estimated through the system identification approach. Based on this mathematical model, the vibration exciter using strain displacement estimator is developed. During the experimental verification phase, it turns out the high modal resonant characteristics of a vibrating plate are a major barrier against obtaining a high bandwidth vibration exciter.

PIV Measurements of Ventilation Flow from the Air Vent of a Real Passenger Car (거대 화상용 PIV 시스템을 이용한 실차 내부 공기벨트 토출흐름의 속도장 측정 연구)

  • Lee, Jin-Pyung;Kim, Hak-Lim;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.1
    • /
    • pp.3-8
    • /
    • 2009
  • Most vehicles have a heating, ventilating and air conditioning (HVAC) device to control the thermal condition and to make comfortable environment in the passenger compartment. The improvement of ventilation flow inside the passenger compartment is crucial for providing comfortable environment. For this, better understanding on the variation of flow characteristics of ventilation air inside the passenger compartment with respect to various ventilation modes is strongly required. Most previous studies on the ventilation flow in a car cabin were carried out using computational fluid dynamics (CFD) analysis or scale-down water-model experiments. In this study, whole ventilation flow discharged from the air vent of a real passenger car was measured using a special PIV (particle image velocimetry) system for large-size FOV (field of view). Under real recirculation ventilation condition, the spatial distributions of stream-wise turbulence intensity and mean velocity were measured in the vortical panel-duct center plane under the panel ventilation mode. These experimental data would be useful for understanding the detailed flow structure of real ventilation flow and validating numerical predictions.

CAE Analysis of $SF_6$ Arc Plasma for a Gas Circuit Breaker Design (가스차단기 최적설계를 위한 $SF_6$ 아크 플라즈마 CAE 해석)

  • Lee Jong C.;Ahn Heui-Sub;Kim Youn J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.365-368
    • /
    • 2002
  • The design of industrial arc plasma systems is still largely based on trial and error although the situation is rapidly improving because of the available computational power at a cost which is still fast coming down. The desire to predict the behavior of arc plasma system, thus reducing the development cost, has been the motivation of arc research. To interrupt fault current, the most enormous duty of a circuit breaker, is achieved by separating two contacts in a interruption medium, $SF_{6}$ gas or air etc., and arc plasma is inevitably established between the contacts. The arc must be controlled and interrupted at an appropriate current zero. In order to analyze arc behavior in $SF_{6}$ gas circuit breakers, a numerical calculation method combined with flow field and electromagnetic field has been developed. The method has been applied to model arc generated in the Aachen nozzle and compared the results with the experimental results. Next, we have simulated the unsteady flow characteristics to be induced by arcing of AC cycle, and conformed that the method can predict arc behavior in account of thermal transport to $SF_{6}$ gas around the arc, such as increase of arc voltage near current zero and dependency of arc radius on arc current to maintain constant arc current density.

  • PDF

Development of Crack Detecting Method at Steam Turbine Blade Root Finger using Ultrasonic Test (초음파탐상 검사를 이용한 증기터빈 블레이드 루트 휭거 균열 탐지기법 개발)

  • Yun, Wan-No;Kim, Jun-Sung;Kang, Myung-Soo;Kim, Duk-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.738-744
    • /
    • 2011
  • The reliability of blade root fixing section is required to endure the centrifugal force and vibration stress for the last stage blade of steam turbine in thermal power plant. Most of the domestic steam turbine last stage blades have finger type roots. The finger type blade is very complex, so the inspection had been performed only on the exposed fixing pin cross-section area due to the difficulty of inspection. But the centrifugal force and vibration stress are also applied at the blade root finger and the crack generates, so the inspection method for finger section is necessary. For the inspection of root finger, inspection points were decided by simulating ultra-sonic path with 3D modeling, curve-shape probe and fixing jig were invented, and the characteristics analysis method of ultrasonic reflection signal and defect signal disposition method were invented. This invented method was actually executed at site and prevented the blade liberation failure by detecting the cracks at the fingers. Also, the same type blades of the other turbines were inspected periodically and the reliability of the turbine increased.

A nonlocal strain gradient theory for scale-dependent wave dispersion analysis of rotating nanobeams considering physical field effects

  • Ebrahimi, Farzad;Haghi, Parisa
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.373-393
    • /
    • 2018
  • This paper is concerned with the wave propagation behavior of rotating functionally graded temperature-dependent nanoscale beams subjected to thermal loading based on nonlocal strain gradient stress field. Uniform, linear and nonlinear temperature distributions across the thickness are investigated. Thermo-elastic properties of FG beam change gradually according to the Mori-Tanaka distribution model in the spatial coordinate. The nanobeam is modeled via a higher-order shear deformable refined beam theory which has a trigonometric shear stress function. The governing equations are derived by Hamilton's principle as a function of axial force due to centrifugal stiffening and displacement. By applying an analytical solution and solving an eigenvalue problem, the dispersion relations of rotating FG nanobeam are obtained. Numerical results illustrate that various parameters including temperature change, angular velocity, nonlocality parameter, wave number and gradient index have significant effect on the wave dispersion characteristics of the understudy nanobeam. The outcome of this study can provide beneficial information for the next generation researches and exact design of nano-machines including nanoscale molecular bearings and nanogears, etc.

Aging of Solid Fuels Composed of Zr and ZrNi Part 2: Kinetics Extraction for Full Simulation (Zr과 ZrNi로 구성된 고체연료의 노화 연구 Part 2: 화학반응식 추출 및 성능모사)

  • Han, Byungheon;Park, Yoonsik;Gnanaprakash, K.;Yoo, Jaeyong;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.14-27
    • /
    • 2020
  • Differential scanning calorimetry and numerical analysis were performed to estimate the performance degradation and ignition characteristics of the pyrotechnic device due to aging. The reaction kinetics extracted from the calorimetry are implemented into the numerical simulation of the igniter and the pyrotechnic delay, subjected to natural, thermal, and hygrothermal aging conditions. Also, combustion experiments are conducted to confirm that aging due to moisture is a major cause of performance failure of the pyrotechnic device as shown from the present numerical simulations.

Wearing Behavior of the Active Silver Generation to Functional Textiles Related with Gender and Age (액티브 실버층의 성별과 연령에 따른 건강 쾌적 기능성 소재 의류의 착용 행동)

  • Park, Myung-Ja;Kim, Jung-Min;Park, Jae-Ok
    • The Research Journal of the Costume Culture
    • /
    • v.18 no.6
    • /
    • pp.1063-1075
    • /
    • 2010
  • Studying awareness, importance, satisfaction, and wearing behavior of functional textiles for active silver generation related with gender and age is expected to contribute to clothing products development to improve and maintain their health and marketing strategy fit for user characteristics. For empirical research, a survey was developed and the aged 50 and above were 332 respondents. The results of the study are as follows. First, silver generation considered all the clothing comfort sensations important when wearing clothes, such as tactile sensation, clothing pressure sensation, thermal/wet sensation, and motion sensation in human physiological aspect. Also, stretchy fabrics were ranked first in awareness, the number of wearing times, and satisfaction of comfort functional fabrics. More than 30% of silver generation have fifteen items out of 36 functional clothes. Second, in analysis of awareness by gender on functional clothing products, women were more aware of health/safety-oriented fabrics than men were. Otherwise, men had more knowledge about the water-related properties of functional fabrics than women have, such as water/moisture absorptive and water-repellent/vapor permeable fabrics. While women have more indoor casual wear, men had more active sportswear. Also, women expressed a strong preference to the stretchy function of fabrics.

Conjugate Natural Convection in Double Enclosed Annuli Between Horizontal Concentric Cylinders (水平 同心圓二重 環狀密閉 空間에서의 Conjugate 自然對流 熱傳達)

  • 손병진;강희영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.430-439
    • /
    • 1985
  • Conjugate natural convection in double enclosed annuli between horizontal concentric cylinders has been studied by the numerical analysis and experimental measurements. The interface conditions between the liquid and the solid of middle shell are obtained through the correlation factor based on the ratio of solid to fluid thermal conductivities and the Prandtl number. The characteristics of conjugate heat transfer are discussed under various dimensionless parameters such as conductivity ratios, shell thickness, diameter ratios, Prandtl number, and Rayleigh number. It is found that the average equivalent conductivity K over var $_{eq}$ does not depend on the conductivity ratios and shell thickness. The K over bar $_{eq}$ however, depends on the Prandtl number and the Rayleigh number.