• Title/Summary/Keyword: Thermal Test Equipment

Search Result 155, Processing Time 0.026 seconds

Design of Access Fixture for a Large Vacuum Chamber (대형 열진공챔버용 내부 위성체 근접 치구 설계)

  • Lee, Sang-Hoon;Cho, Hyok-Jin;Seo, Hee-Jun;Moon, Guee-Won
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • Thermal vacuum test should be carried out to verify the performance of the S/C on the ground under the simulated space environment. KARI already completed the construction of a Large Thermal Vacuum Chamber(LTVC) with 8 m of diameter and 10 m of length dimension. LTVC is for the purpose of performing the orbital environment test for large Space Craft(S/C). Inside LTVC, S/C is much smaller than LTVC. For the function test of S/C during the thermal vacuum test, the S/C has to be connected to Electrical Ground Support Equipment(EGSE) which includes several cable and RF wave guide inside LTVC. Also, MLI should be installed on S/C before the test. But it is very difficult to access the S/C inside big LTVC. To solve the accessibility to the S/C inside LTVC, KARI designed an access fixture. This fixture provides easy access to the any S/C thus can help safe installation and saving time for the related work inside LTVC. This paper describes whole process for the design of the access fixture.

  • PDF

Warm-up and Cool-down Characteristics of Cryogenic Insulation Materials in Liquid Nitrogen (액체질소에서의 극저온 절연매질의 Warm-up/Cool-down 특성)

  • Lee, Sang-Hwa;Shin, Woo-Ju;Khan, Umer Amir;Oh, Seok-Ho;Sung, Jae-Kyu;Lee, Bang-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.119-119
    • /
    • 2010
  • Among the various factors influencing the service life of the electric equipment, the performance of dielectric insulation materials has an important role to determine their whole service life. In order to determine the degradation of insulating materials immersed in extremely low temperature media such as liquid nitrogen, the abrupt temperature change from cryogenic to normal room temperature should be considered. But the assessments of low-temperature aging test method for the dielectric materials immersed in liquid nitrogen considering these conditions were not fully reported. Therefore, for the fundamental step to establish the suitable degradation test methods for cryogenic dielectric materials, we focused on the evaluation of ageing test methods for dielectric materials exposed to low temperature environments considering thermal shock by cool-down and warm up test.

  • PDF

Development of Cold Chain System Using Thermal Storage with Low-Energy Type (저 에너지형 축냉식 저온유통 시스템 개발)

  • Kwon K.H.;Jeong J.W.;Kim J.H.;Choi C.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.3 s.116
    • /
    • pp.161-167
    • /
    • 2006
  • The purpose of this study is to find the optimal conditions of PCM slurry manufacturing equipment for saving the marketing cost and keeping the original quality of products. In addition, the characteristics of the movable container for shipping or distributing products is analysed. The major results are as follows. 1. PCM thermal storage system is designed with the conditions of temperature($-5{\sim}10^{\circ}C$), cold chain time(30 minutes), and one time usage(50 liter). This system includes tank, freezer, circulating pump, cycle type heat exchanger, swelling tank, equipment of supplying PCM supplying unit includes cold tank, cycle type heat exchanger, suction unit and control equipments, etc. 2. After ability test of PCM thermal storage system, it shows that the required freezing time of PCM thermal storage system is less than one of the previous system. The reason is that churn (top and bottom) and compulsion circulation are occurred simultaneously and unit cooler type method is better than chiller type method. 3. By the experiment of transportation latent heat container, it is decided that the best container is $K_1$ with latent heat temperature($0{\sim}5^{\circ}C$) and density(0.15%). However, for $K_l\;and\;K_2$, it is necessary more studies on latent heat thermal conditions and conditions of making method.

Thermal Design of MGSE Panel for Thermal Vacuum Test of Ka-band Engineering Qualification Model Payload of Communications and Broadcasting Satellite (통신방송위성 Ka-대역 기술인증모델 탑재체의 열진공시험을 위한 MGSE 패널 열설계)

  • Kim, Jeong Hun;Choe, Seong Bong;Yang, Gun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.96-102
    • /
    • 2003
  • The thermal design of MGSE(Mechanical Ground Support Equipment) panel is performed for thermal vacum thest of Ka-band EQM(Engineering Qualification Model) payload of communications and broadcasting satellite. The thermal environments are predicted to evaluate the performance of transponder equipments in the thermal vacum chamber. SINDA is used to verify the thermal design of the heat pipe layout. Embedded 16 heat pipes in the EQM payload developed for Ka-band trasponder equipments are designded properly. The heat fluz loaded on the external facesheet is 265W/㎡ for the hot platear function test of the traspinder equipments, and the zero heat flux for the cold plateau case. The maxium predicted heat transport capability is 2723 W-cm.

An experimental study on the fireproof performance of fire damper according to change of the insulation conditions on the exposed side and unexposed side of the coaming (코밍 노출면 방열 두께 및 비 노출면 방열 길이 변화에 따른 방화 댐퍼의 내화성능에 관한 실험적 연구)

  • Choi, Tai-Jin;Kim, Joung-Sik;Lim, Young-Soo;Lee, Kyung-Hyun;Kang, Ho-Keun;Park, Sung-Ho;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.99-104
    • /
    • 2014
  • In this paper, Fire resistance test was carried out in accordance with the change of the insulation conditions on the exposed side and unexposed side of the coaming to obtain optimal insulation conditions for class H-120 insulation in connection with specimen-1 of the preceding paper for the evaluation of fireproof performance for fire dampers according to hydrocarbon fire conditions. As a test result, specimen-2(88 mm, $171^{\circ}C$) was satisfied class H-120 insulation, but specimen-3(76 mm, $181^{\circ}C$) was exceeded thermal insulation acceptance criteria at 110 minutes, therefor, specimen-2(88 mm) is optimal insulation conditions as possible lightweight than specimen-1. Test result comparison, we concluded that temperature rising of the coaming insulation surface was influenced by conductive heat from the bulkhead, and coaming surface was influenced by radiant heat from blade & coaming.

Gate Leakage Current Characteristics of GaAs MESFETS′ with different Temperature (GaAs MESFET의 온도변화에 다른 게이트 누설전류 특성)

  • 원창섭;김시한;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.50-53
    • /
    • 2001
  • In this study, gate leakage current mechanism has been analyzed for GaAs MESFET with different temperatures ranging from 27$^{\circ}C$ to 300$^{\circ}C$ . It is expected that the thermionic and field emission at the MS contact will dominate the current flow. Thermal cycle is applied to test the reliability of the device. From the results, it is proved that thermal stress gradually increases the gate leakage current at the same bias conditions and leads to the breakdown and failure mechanism which is critical in the field equipment. Finally the gate contact under the repeated thermal shock has been tested to check the quality of Schottky barrier and the current will be expressed in the analytical from to associate with the electrical characteristics of the device.

  • PDF

A Comparison Analysis on Thermal Performance According to Shape of Steel Stud Applied to Steel House (스틸 하우스 적용 스틸 스터드의 형상에 따른 단열성능 비교 연구)

  • Jang, Cheol-Yong;Lee, Na-Eun;Um, Eun-Jung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.241-245
    • /
    • 2009
  • The dry wall using steel stud is used to buildings in the inside and outside of the country because it has the merit that application is possible to various architecture. The purpose of this study is to measure thermal performance of dry wall which uses steel stud transformed one by using measurement equipment to decrease heat bridge of steel stud and ensure heat performance as dry wall. As a comparative performance test result, dry wall which uses steel stud transformed one has a performance enhancement compare with the dry wall using general steel stud.

  • PDF

Design and Application of Accelerated Run-in Test for ECU Quality Improvement (ECU 품질 개선을 위한 Accelerated Run-in Test 설계 및 효과고찰)

  • Cho, Hyogeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.145-151
    • /
    • 2014
  • Modern vehicle has a lot of ECU(Electronic Control Unit) products to control many parts such as engine, transmission, brake, body and so on. ECU quality is one of important factors related to vehicle quality and driver's safety. Based on Bath-tub curve which presents failure rate during product lifetime, we designed and applied Accelerated Run-in Test into manufacturing line by simulating stress amount to ECU and developing the required software and efficient test equipment for mass production. This test makes ECU products stressed through electrical and thermal stresses under excessive driving condition, which induce potential initial failure of components in the ECU during production. The outcome until these days proved that Acceleration Run-in Test have reduced initial failure rates and increased quality of ECU products in the field outstandingly.

Analysis on the influence of sports equipment of fiber reinforced composite material on social sports development

  • Jian Li;Ningjiang Bin;Fuqiang Guo;Xiang Gao;Renguo Chen;Hongbin Yao;Chengkun Zhou
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.49-57
    • /
    • 2023
  • As composite materials are used in many applications, the modern world looks forward to significant progress. An overview of the application of composite fiber materials in sports equipment is provided in this article, focusing primarily on the advantages of these materials when applied to sports equipment, as well as an Analysis of the influence of sports equipment of fiber-reinforced composite material on social sports development. The present study investigated surface morphology and physical and mechanical properties of S-glass fiber epoxy composites containing Al2O3 nanofillers (for example, 1 wt%, 2 wt%, 3 wt%, 4 wt%). A mechanical stirrer and ultrasonication combined the Al2O3 nanofiller with the matrix in varying amounts. A compression molding method was used to produce sheet composites. A first physical observation is well done, which confirms that nanoparticles are deposited on the fiber, and adhesive bonds are formed. Al2O3 nanofiller crystalline structure was investigated by X-ray diffraction, and its surface morphology was examined by scanning electron microscope (SEM). In the experimental test, nanofiller content was added at a rate of 1, 2, and 3% by weight, which caused a gradual decrease in void fraction by 2.851, 2.533, and 1.724%, respectively, an increase from 2.7%. The atomic bonding mechanism shows molecular bonding between nanoparticles and fibers. At temperatures between 60 ℃ and 380 ℃, Thermogravimetric Analysis (TGA) analysis shows that NPs deposition improves the thermal properties of the fibers and causes negligible weight reduction (percentage). Thermal stability of the composites was therefore presented up to 380 ℃. The Fourier Transform Infrared Spectrometer (FTIR) spectrum confirms that nanoparticles have been deposited successfully on the fiber.

Life cycle cost analysis and smart operation mode of ground source heat pump system

  • Yoon, Seok;Lee, Seung-Rae
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.743-758
    • /
    • 2015
  • This paper presents an advanced life cycle cost (LCC) analysis of a ground source heat pump (GSHP) system and suggests a smart operation mode with a thermal performance test (TPT) and an energy pile system constructed on the site of the Incheon International Airport (IIA). First, an economic analysis of the GSHP system was conducted for the second passenger terminal of the IIA considering actual influencing factors such as government support and the residual value of the equipment. The analysis results showed that the economic efficiency of the GSHP system could be increased owing to several influential factors. Second, a multiple regression analysis was conducted using different independent variables in order to analyze the influence indices with regard to the LCC results. Every independent index, in this case the initial construction cost, lifespan of the equipment, discount rate and the amount of price inflation can affect the LCC results. Third, a GSHP system using an energy pile was installed on the site of the construction laboratory institute of the IIA. TPTs of W-shape and spiral-coil-type GHEs were conducted in continuous and intermittent operation modes, respectively, prior to system operation of the energy pile. A cooling GSHP system in the energy pile was operated in both the continuous and intermittent modes, and the LCC was calculated. Furthermore, the smart operation mode and LCC were analyzed considering the application of a thermal storage tank.