• Title/Summary/Keyword: Thermal Spray

Search Result 525, Processing Time 0.027 seconds

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).

A Research on Thermal Properties & Fire Resistance of A Water Film Covered Glazing System for Large Atrium Space (대규모 아트리움에 적용되는 수박형성 유리벽의 열적 특성 및 내화성능에 관한 연구)

  • 박형주;지남용
    • Fire Science and Engineering
    • /
    • v.13 no.4
    • /
    • pp.38-55
    • /
    • 1999
  • In order practically to use fire-defective glazing materials for the compartment wall where a fire-protection rating is mandated, there have been many trials internationally, This research focuses on a feasibility that, if certain water film covered all surface of glass, the glazing system can endure without breaking out under the compartment fire. First of all, a water film spray system was specially designed to wet the entire surface of the glass and also to have tiny small amount of water rebounded from the surface after emitted from nozzles. After this system has proven to have perfect performance, small-scale tests were done to find out if the water film covered glazing system react to the high temperature curve in a small furnace room. Finally, on basis of the obtained data, full-scale experiments were done so that water-film covered glazing system can pass the Korean Standard (KS) test for fire resistance, KS F2257.

  • PDF

Empirical Analysis on the Cooling Load and Evaporation Efficiency of Fogging System in Greenhouses (온실의 냉방부하 및 포그시스템의 증발효율 실험분석)

  • Nam, Sang-Woon;Seo, Dong-Uk;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • In order to develop the cooling load estimation method in the greenhouse, the cooling load calculation formula based on the heat balance method was constructed and verified by the actual cooling load measured in the fog cooling greenhouse. To examine the ventilation heat transfer in the cooling load calculation formula, we measured ventilation rates in the experimental greenhouse which a cooling system was not operated. The ventilation heat transfer by a heat balance method showed a relatively good agreement. Evaporation efficiencies of the two-fluid fogging system were a range of 0.3 to 0.94, average 0.67, and it showed that they increased as the ventilation rate increased. We measured thermal environments in a fog cooling greenhouse, and calculated cooling load by heat balance equation. Also we calculated evaporative cooling energy by measuring the sprayed amount in the fogging system. And by comparing those two results, we could verify that the calculated and the measured cooling load showed a relatively similar trend. When the cooling load was low, the measured value was slightly larger than calculated, when the cooling load was high, it has been found to be smaller than calculated. In designing the greenhouse cooling system, the capacity of cooling equipment is determined by the maximum cooling load. We have to consider the safety factor when installed capacity is estimated, so a cooling load calculation method presented in this study could be applied to the greenhouse environmental design.

A study on the Dioxin behavior in the process of representative pyrolysis/gasfication/melting plant (대표적인 열분해가스화 용융시설의 공정별 다이옥신 배출거동에 관한 연구)

  • Shin, Chan-Ki;Shin, Dae-Yun
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.1 s.63
    • /
    • pp.1-16
    • /
    • 2007
  • The incineration process has commonly used for wastes amount reduction and thermal treatments of pollutants as the technologies accumulated. However, the process is getting negative public images owing to matter of hazardous pollutants emission. Specially dioxins became a main issue and is mostly emitted from municipal solid wastes incineration. In this reason, pyrolysis/gasfication/melting process is presented as a alternative of incineration process. The pyrolysis/gasfication/melting process, a novel technology, is middle of verification of commercial plant and development of technologies in Korea. But the survey about the pollutant emission from the process, and background data in these facilities is necessary. So in this survey, it Is investigated that the behavior of dioxins in three pyrolysis/gasfication/melting plant (S, T, P) of pilot scale. In case of S plant, concentration of dioxins shows high at latter part of cogenerated boiler and stack which are operate on low temperature conditions than a latter parts of pyrolysis and melting furnace which are operate on high temperature condition. Concentration of gas phage dioxins had increased after combusted gas passed cogenerated boiler and this is attributed to react of precursor materials such as chlorobenzene and chlorophenol. Concentration of dioxins in T plant showed lower levels at latter part of cooling equipment which are operate with water spray type on low temperature conditions than a latter parts of gasfied melting furnace which are operate on high temperature condition. Removal efficiency of dioxins at gas treatment equipment was 78.8 %. Concentration of dioxins in P plant was low at latter part of SDA/BF which is operate at low temperature conditions than a latter parts of pyrolysis gasfied chamber which are operate at high temperature condition. Removal efficiency of dioxins of SDA/BF was 85.9 % and therefore, it showed high efficiency at those of stoker type incineration facility. However, concentration of dioxins which emitted at high temperature condition were low in three facilities and satisfied present standard emission level of dioxins. To consider the distribution ratio of dioxins, Particulate phase dioxins at S and P plants showed similar ratio with which shows in current stoker type for middle scale domestic waste incineration facility. It is necessary to continuos monitoring the ratio of distribution of dioxins in T plant in because ratio of gas phage dioxins showed high.

Effect of Drying Methods on Physicochemical Properties of Agar (건조 방법이 한천의 물리${\cdot}$화학적 특성에 미치는 영향)

  • KIM Oc-Do;KIM Yuck-Yong;LEE Nahm-Gull;CHO Young-Je;LEE Kang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.5
    • /
    • pp.681-688
    • /
    • 1996
  • To investigate the effort of drying methods on the physicochemical properties of agar, gel strength, viscosity, melting and setting point, and phase transition by differential scanning calorimetery (DSC) during its heating were determined. In addition the structural differences of agar powder by scanning electron microscope (SEM) was examined. The most shortest onset temperature of gel strength increase was extruding method among any other methods. Viscosity of agar with hot air method, 400.00 cps at $45^{\circ}C$, was markedly increased, but with spraying and extruding ones were little change. The melting and setting point, and the temperature for maximum endothermic and enthalpy for agar with extruding one, $80.01^{\circ}C,\;36.05^{\circ}C\;and\;61.72^{\circ}C,\;0.73\;cal/g$, respectively, were lowest among the drying ones. But in the case of reheating after gelling, there were little change in all methods. Observing the surface structure of agar with SEM, extruding method showed the most unstable with absorptive property.

  • PDF

Improvement of Adhesion Strength of High Temperature Plasma Coated Aluminum Substrate with Aluminum-Alumina Powder Mixture (알루미늄 기지에 알루미늄-알루미나 혼합분말을 이용한 고온플라즈마 열분사 코팅층의 밀착강도 향상기구)

  • Park, Jin Soo;Lee, Hyo Ryong;Lee, Beom Ho;Park, Joon Sik
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.226-232
    • /
    • 2015
  • High temperature plasma coating technology has been applied to recover damaged aluminum dies from wear by spraying pure aluminum and alumina powder. However, the coated mixed powder layer composed of aluminum and alumina often undergoes a detachment from the substrate, making the coated substrate die unable to maintain its expected life span. In this study, in order to increase the bonding strength between the substrate and the coating layer, a pure aluminum layer was applied as an intermediate bond layer. In order to prepare the specimen with variable bond coating conditions, the bond coat layers with a various gun speed from 10 cm/sec to 30 cm/sec were prepared with coating cycle variations ranging from three to nine cycles. The specimen with a bond coat layer coated with a gun speed of 20 cm/sec and three coating cycles exhibited ~13MPa of adhesion strength, while the specimen without a bond coat layer showed ~6 MPa of adhesion strength. The adhesion strength with a variation of bond coat layer thickness is discussed in terms of coating parameters.

A Study on Heat Transfer of n Storage Type Direct Contact Heat Exchanger for Solar Energy Utilization (태양열 이용 축열식 직접접촉 열교환기의 열전달에 관한 연구)

  • Kang, Yong-Heack;Jeon, Myung-Seok;Yoon, Hwan-Ki;Chun, Won-Gee
    • Solar Energy
    • /
    • v.15 no.3
    • /
    • pp.3-14
    • /
    • 1995
  • The Direct Contact heat Exchanger(DCHX) has been widely studied in the chemical industry for many years due to its inherent simplicity as a counter-current divice for heat and mass transfer. In many solar systems, the DCHX unit can be combined with the thermal storage unit, or alternatively, it can be used separately from the storage unit, much like an external(to storage) closed heat exchanger system. In the present work, the spray column type of direct contact heat exchangers are studied extensively to harness the solar energy for hot water and spaced heating. Some of the major considerations that are involved in the design of heat exchangers in this study are that : working fluid is a hydrocaabon(such as Texaterm) or water which is either lighter or heavier than storage medium. The experimental data have revealed some interesting characteristics concerning the application of DCHXs for solar energy utilization. These experiments are carried out in the line of solar heating system, major results are as follows : 1) the flow and aspect of working fluid drop for maxium heat transfer 2) efficiency and volumetric heat transfer coefficient of D.C.H.X with a heavier working fluid are higher than those of D.C.H.X with a lighter working fluid.

  • PDF

Experimental Study on Interaction of Water Sprayed Curtain on Hot Surface of a Window Glass and its Effects on Glass Surface Temperature in Room Fires (구획화재 시 국부복사열에 노출된 유리면의 수막접촉에 따른 급냉파열특성 관한 실험적 연구)

  • 박형주;지남용
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.124-130
    • /
    • 2003
  • This research focuses on analysis of a interaction fracture of various glasses due to contact of water sprayed curtain on hot glass surface with high temperature produced from convective heat source near glass wall. A large scaled experimental test was done in order to find the range of the glass surface temperature to be able to cause the breakage of the glasses when water droplets reach on the hot surface. This paper shows the allowable temperature of the glass surface for prevention of the cooling down breakage before water curtain droplets contact the surface. Allowable Temperature if $250^{\circ}C$ for the tempered glass but general glass is very relatively low. Therefore if the water curtain spray system was adequately activated by a thermal detector installed below ceiling adjacent glass wall with water curtain nozzle system, all hot glass would not break out by cooling water droplet's contact on the hot surface due to convective heat released by adjacent fire source near the glass wall.

An Experimental Study on Evaluation of Bond Strength of Arc Thermal Metal Spaying According to Treatment Method of Water Facilities Concrete Surface (수처리 시설물 콘크리트 표면처리 방법에 따른 금속용사 피막의 부착성능 평가에 관한 실험적 연구)

  • Park, Jin-Ho;Lee, Han-Seung;Shin, Jun-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.107-115
    • /
    • 2016
  • In this study, the bond strength of metal spraying system by surface treatment of concrete (waterproof/corrosion method) in water treatment facilities was evaluated. The results showed that the system with Sa-P-R-(S) (sanding-perviousness surface hardener-surface roughness agent-metal spraying-sealing) led to the desirable performance. The bond strength, the coefficient of water permeability and air permeability were 3.7MPa, $0.68{\ast}10^{-8}cm/sec$, and $0.45{\ast}10^{-16}m^2$, respectively. In scanning electron microscope analysis, the microstructure of specimen coated with perviousness surface hardener was much denser than that without it. Therefore, the specimen coated with sanding-perviousness surface hardener-surface roughness agent-metal spraying-sealing had the best bond performance and was the most suitable system to concrete surface in water treatment facilities.

Recent Progress in Air Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 (공기조화, 냉동 분야의 최근 연구 동향: 2006년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.427-446
    • /
    • 2008
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 has been accomplished. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro heat exchanger and siphon cooling device using nano-fluid. Traditional CFD and flow visualization methods were still popular and widely used in research and development. Studies about diffusers and compressors were performed in fluid machinery. Characteristics of flow and heat transfer and piping optimization were studied in piping systems. (2) The papers on heat transfer have been categorized into heat transfer characteristics, heat exchangers, heat pipes, and two-phase heat transfer. The topics on heat transfer characteristics in general include thermal transport in a cryo-chamber, a LCD panel, a dryer, and heat generating electronics. Heat exchangers investigated include pin-tube type, plate type, ventilation air-to-air type, and heat transfer enhancing tubes. The research on a reversible loop heat pipe, the influence of NCG charging mass on heat transport capacity, and the chilling start-up characteristics in a heat pipe were reported. In two-phase heat transfer area, the studies on frost growth, ice slurry formation and liquid spray cooling were presented. The studies on the boiling of R-290 and the application of carbon nanotubes to enhance boiling were noticeable in this research area. (3) Many studies on refrigeration and air conditioning systems were presented on the practical issues of the performance and reliability enhancement. The air conditioning system with multi indoor units caught attention in several research works. The issues on the refrigerant charge and the control algorithm were treated. The systems with alternative refrigerants were also studied. Carbon dioxide, hydrocarbons and their mixtures were considered and the heat transfer correlations were proposed. (4) Due to high oil prices, energy consumption have been attentioned in mechanical building systems. Research works have been reviewed in this field by grouping into the research on heat and cold sources, air conditioning and cleaning research, ventilation and fire research including tunnel ventilation, and piping system research. The papers involve the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies on indoor air quality took a great portion in the field of building environments. Various other subjects such as indoor thermal comfort were also investigated through computer simulation, case study, and field experiment. Studies on energy include not only optimization study and economic analysis of building equipments but also usability of renewable energy in geothermal and solar systems.