• Title/Summary/Keyword: Thermal Resolution

Search Result 465, Processing Time 0.027 seconds

Research on Thermal Refocusing System of High-resolution Space Camera

  • Li, Weiyan;Lv, Qunbo;Wang, Jianwei;Zhao, Na;Tan, Zheng;Pei, Linlin
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.69-78
    • /
    • 2022
  • A high-resolution camera is a precise optical system. Its vibrations during transportation and launch, together with changes in temperature and gravity field in orbit, lead to different degrees of defocus of the camera. Thermal refocusing is one of the solutions to the problems related to in-orbit defocusing, but there are few relevant thermal refocusing mathematical models for systematic analysis and research. Therefore, to further research thermal refocusing systems by using the development of a high-resolution micro-nano satellite (CX6-02) super-resolution camera as an example, we established a thermal refocusing mathematical model based on the thermal elasticity theory on the basis of the secondary mirror position. The detailed design of the thermal refocusing system was carried out under the guidance of the mathematical model. Through optical-mechanical-thermal integration analysis and Zernike polynomial calculation, we found that the data error obtained was about 1%, and deformation in the secondary mirror surface conformed to the optical index, indicating the accuracy and reliability of the thermal refocusing mathematical model. In the final ground test, the thermal vacuum experimental verification data and in-orbit imaging results showed that the thermal refocusing system is consistent with the experimental data, and the performance is stable, which provides theoretical and technical support for the future development of a thermal refocusing space camera.

Thermal Design and On-Orbit Thermal Analysis of 6U Nano-Satellite High Resolution Video and Image (HiREV) (6U급 초소형 위성 HiREV(High Resolution Video and Image)의 광학 카메라의 열 설계 및 궤도 열 해석)

  • Han-Seop Shin;Hae-Dong Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.257-279
    • /
    • 2023
  • Korea Aerospace Research Institute has developed 6U Nano-Satellite high resolution video and image (HiREV) for the purpose of developing core technology for deep space exploration. The 6U HiREV Nano-Satellite has a mission of high-resolution image and video for earth observation, and the thermal pointing error between the lens and the camera module can occur due to the high temperature in camera module on mission mode. The thermal pointing error has a large effect on the resolution, so thermal design should solve it because the HiREV optical camera is developed based on commercial products that are the industrial level. So, when it operates in space, the thermal design is needed, because it has the best performance at room temperature. In this paper, three passive thermal designs were performed for the camera mission payload, and the thermal design was proved to be effective by performing on-orbit thermal analysis.

High Performance Thermoelectric Scanning Thermal Microscopy Probe Fabrication (고성능 주사탐침열현미경 열전탐침 제작)

  • Kim, Donglip;Kim, Kyeongtae;Kwon, Ohmyoung;Park, Seungho;Choi, Young Ki;Lee, Joon Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1503-1508
    • /
    • 2005
  • Scanning Thermal Microscope (STU) has been known for its superior resolution for local temperature and thermal property measurement. However, commercially available STU probe which is the key component of SThM does not provide resolution enough to explore nanoscale thermal phenomena. Here, we developed a SThM probe fabrication process that can achieve spatial resolution around 50 m. The batch-fabricated probe has a thermocouple junction located at the end of the tip. The size of the thermocouple junction is around 200 m and the distance of the junction from the very end of the tip is 150 m. The probe is currently being used for nanoscale thermal probing of nano-material and nano device.

ATMOSPHERIC CORRECTION OF LANDSAT SEA SURFACE TEMPERATURE BY USING TERRA MODIS

  • Kim, Jun-Soo;Han, Hyang-Sun;Lee, Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.864-867
    • /
    • 2006
  • Thermal infrared images of Landsat-5 TM and Landsat-7 ETM+ sensors have been unrivalled sources of high resolution thermal remote sensing (60m for ETM+, 120m for TM) for more than two decades. Atmospheric effect that degrades the accuracy of Sea Surface Temperature (SST) measurement significantly, however, can not be corrected as the sensors have only one thermal channel. Recently, MODIS sensor onboard Terra satellite is equipped with dual-thermal channels (31 and 32) of which the difference of at-satellite brightness temperature can provide atmospheric correction with 1km resolution. In this study we corrected the atmospheric effect of Landsat SST by using MODIS data obtained almost simultaneously. As a case study, we produced the Landsat SST near the eastern and western coast of Korea. Then we have obtained Terra/MODIS image of the same area taken approximately 30 minutes later. Atmospheric correction term was calculated by the difference between the MODIS SST (Level 2) and the SST calculated from a single channel (31 of Level 1B). This term with 1km resolution was used for Landsat SST atmospheric correction. Comparison of in situ SST measurements and the corrected Landsat SSTs has shown a significant improvement in $R^2$ from 0.6229 to 0.7779. It is shown that the combination of the high resolution Landsat SST and the Terra/MODIS atmospheric correction can be a routine data production scheme for the thermal remote sensing of ocean.

  • PDF

Accuracy Assessment of Sharpening Algorithms of Thermal Infrared Image Based on UAV (UAV 기반 TIR 영상의 융합 기법 정확도 평가)

  • Park, Sang Wook;Choi, Seok Keun;Choi, Jae Wan;Lee, Seung Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.555-563
    • /
    • 2018
  • Thermal infrared images have the characteristic of being able to detect objects that can not be seen with the naked eye and have the advantage of easily obtaining information of inaccessible areas. However, TIR (Thermal InfraRed) images have a relatively low spatial resolution. In this study, the applicability of the pansharpening algorithm used for satellite imagery on images acquired by the UAV (Unmanned Aerial Vehicle) was tested. RGB image have higher spatial resolution than TIR images. In this study, pansharpening algorithm was applied to TIR image to create the images which have similar spatial resolution as RGB images and have temperature information in it. Experimental results show that the pansharpening algorithm using the PC1 band and the average of RGB band shows better results for the quantitative evaluation than the other bands, and it has been confirmed that pansharpening results by ATWT (${\grave{A}}$ Trous Wavelet Transform) exhibit superior spectral resolution and spatial resolution than those by HPF (High-Pass Filter) and SFIM (Smoothing Filter-based Intensity Modulation) pansharpening algorithm.

Wide-angle optical design using high-resolution uncooled thermal detector

  • Lee, Jonghoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.31-37
    • /
    • 2017
  • In this paper, we propose efficient design and construction of an infrared wide angle optical system with low distortion utilizing a high resolution detector for automobile application. The operational convenience and the recognition ability have been improved significantly by applying the high resolution uncooled thermal detector with wide angle optical design. The active ahtermalization mechanism is implemented so that the adjustment of the optical component of the system is to be made automatically according to the temperature change by motorized control. The modulation transfer function (MTF) is about 50% at the Nyquist frequency close the diffraction limit. The distortion is less than 5% at the edge field. As a result, a high-resolution uncooled thermal optical system with wide field of view (FOV) is assembled, aligned and its performance is tested successfully.

The Land Surface Temperature Analysis of Seoul city using Satellite Image (위성영상을 통한 서울시 지표온도 분석)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.19-26
    • /
    • 2013
  • The propose of this study is to analyze the optimum spatial resolution of the urban spatial thermal environment structure and to evaluate of the possibility detection using aerial photographs and thermal satellite images. The proper techniques of the optimum spatial resolution for the urban spatial thermal environment structure were analyzed. Thermal infrared satellite image of Seoul city were used for the change rate of surface temperature variation and suggested to the spatial extent and effects of urban surface characteristics and spatial data was interpreted as regions. To extract the surface temperature, Landsat thermal infrared satellite image compared with an automatic weather station data and in the field of the measured temperature and surface temperature by thermal environment affects, the spatial domain has been verified. The surface temperature of the satellite images to extract after adjusting surface temperature isotherms were constructed. The changes in surface temperature from 2008 to 2012 the average surface temperature observation images of changing areas were divided into space. The results of this study are as follows: Through analysis of satellite imagery, Seoul city surface temperature change due to extraction comfort indices were classified into four grades. The comfort index indicative of the temperature of Gangnam-gu, $23.7{\sim}27.2(^{\circ}C)$ range and Songpagu, a $22.7{\sim}30.6(^{\circ}C)$ respectively, the surface temperature of Yeouido $25.8{\sim}32.6(^{\circ}C)$ were in the range.

Dense Thermal 3D Point Cloud Generation of Building Envelope by Drone-based Photogrammetry

  • Jo, Hyeon Jeong;Jang, Yeong Jae;Lee, Jae Wang;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.73-79
    • /
    • 2021
  • Recently there are growing interests on the energy conservation and emission reduction. In the fields of architecture and civil engineering, the energy monitoring of structures is required to response the energy issues. In perspective of thermal monitoring, thermal images gains popularity for their rich visual information. With the rapid development of the drone platform, aerial thermal images acquired using drone can be used to monitor not only a part of structure, but wider coverage. In addition, the stereo photogrammetric process is expected to generate 3D point cloud with thermal information. However thermal images show very poor in resolution with narrow field of view that limit the use of drone-based thermal photogrammety. In the study, we aimed to generate 3D thermal point cloud using visible and thermal images. The visible images show high spatial resolution being able to generate precise and dense point clouds. Then we extract thermal information from thermal images to assign them onto the point clouds by precisely establishing photogrammetric collinearity between the point clouds and thermal images. From the experiment, we successfully generate dense 3D thermal point cloud showing 3D thermal distribution over the building structure.

Thermal Resolution Analysis of Lock-in Infrared Microscope (위상잠금 열영상 현미경의 온도분해능 분석)

  • Kim, Ghiseok;Lee, Kye-Sung;Kim, Geon-Hee;Hur, Hwan;Kim, Dong-Ik;Chang, Ki Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • In this study, we analyzed and showed the enhanced thermal resolution of a lock-in infrared thermography system by employing a blackbody system and micro-register sample. The noise level or thermal resolution of an infrared camera system is usually expressed by a noise equivalent temperature difference (NETD), which is the mean square of the deviation of the different values measured for one pixel from its mean values obtained in successive measurements. However, for lock-in thermography, a more convenient quantity in the phase-independent temperature modulation amplitude can be acquired. On the basis of results, it was observed that the NETD or thermal resolution of the lock-in thermography system was significantly enhanced, which we consider to have been caused by the averaging and filtering effects of the lock-in technique.

Development and Verification of Thermal Control Subsystem for High Resolution Electro-Optical Camera System, EOS-D Ver.1.0 (고해상도 전자광학카메라 EOS-D Ver.1.0의 열제어계 개발 및 검증)

  • Chang, Jin-Soo;Kim, Jong-Un;Kang, Myung-Seok;Yang, Seung-Uk;Kim, Ee-Eul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.921-930
    • /
    • 2013
  • Satrec Initiative successfully developed and verified a high-resolution electro-optical camera system, EOS-D Ver.1.0. We designed this system to give improved spatial and radiometric resolution compared with EOS-C series systems. The thermal control subsystem (TCS) of the EOS-D Ver.1.0 uses heaters to meet the opto-mechanical requirements during in-orbit operation and uses different thermal coatings and multi-layer insulation (MLI) blankets to minimize the heater power consumption. Also, we designed and verified a refocusing mechanism to compensate the misalignment caused by moisture desorption from the metering structure. We verified the design margin and workmanship by conducting the qualification level thermal vacuum test. We also performed the verification of thermal math model (TMM) by comparing with thermal balance test results. As a result, we concluded that it faithfully represents the thermal characteristics of the EOS-D Ver.1.0.