• 제목/요약/키워드: Thermal Resistance Network Analysis

검색결과 22건 처리시간 0.019초

여러가지 열적 변수가 전폐형 유도전동기의 코일온도상승에 미치는 영향에 관한 연구 (The effects of various thermal parameters on coil temperature rise in TEFC induction motor)

  • 윤명근;하경표;이양수;고상근;한송엽
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.570-578
    • /
    • 1997
  • At design stage of new motor or when taking remedial action of old motor, a lot of information can be obtained from thermal parameters analysis. This study focused on the temperature rise of TEFC induction motor with respect to various thermal parameters. Frame heat transfer had the most important effect on coil temperature rise. But those of air gap and rotor fan had no effect. This fact shows fan action is more important than fin action in the case of rotor fan. Coil temperature can be more decreased by cooling near the heat sources than any other parts from the results of thermal conductivity and loss tests. Variation of cooling air flow rate and motor volume effects on coil temperature were also tested. These tests suggest that improvement of cooling fan performance is important in reducing the coil temperature rise. Thermal equivalent program was verified by comparison of some experimental results.

전자광학카메라 시스템의 열제어계 설계 및 개발 (Design and Development of Thermal Control Subsystem for an Electro-Optical Camera System)

  • 장진수;양승욱;정연황;김이을
    • 한국항공우주학회지
    • /
    • 제37권8호
    • /
    • pp.798-804
    • /
    • 2009
  • (주)쎄트렉아이는 400kg 급 지구관측 위성의 주 탑재체로 사용될 고해상도 전자광학카메라, EOS-C 시스템을 개발 중이다. 이 시스템은 DubaiSat-1 위성의 주 탑재체 개발을 통해 획득한 경험을 토대로 보다 향상된 광기계 및 열적 성능을 갖도록 설계되었다. 민감한 광학부품의 운용상 성능을 유지하기 위해 히터를 이용한 능동 열제어 방식이 적용되었고, 이와 더불어 히터 소모 전력을 최소화하기 위해 열 코팅 및 다층박막단열재(MLI)를 사용한 수동 열제어 방식이 적용되었다. 열해석 모델을 이용해 임무궤도에 대한 열해석을 수행하였으며, 해석 결과를 바탕으로 이 시스템의 열제어계가 설계 요구조건을 만족하는 것을 확인하였다.

Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system

  • Wang, Chenglong;Sun, Hao;Tang, Simiao;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.19-26
    • /
    • 2020
  • Small nuclear reactor features higher power capacity, longer operation life than conventional power sources. It could be an ideal alternative of existing power source applied for special equipment for terrestrial or underwater missions. In this paper, a 25kWe heat pipe cooled reactor power source applied for multiple use is preliminary designed. Based on the design, a thermal-hydraulic analysis code for heat pipe cooled reactor is developed to analyze steady and transient performance of the designed nuclear reactor. For reactor design, UN fuel with 65% enrichment and potassium heat pipes are adopted in the reactor core. Tungsten and LiH are adopted as radiation shield on both sides of the reactor core. The reactor is controlled by 6 control drums with B4C neutron absorbers. Thermoelectric generator (TEG) converts fission heat into electricity. Cooling water removes waste heat out of the reactor. The thermal-hydraulic characteristics of heat pipes are simulated using thermal resistance network method. Thermal parameters of steady and transient conditions, such as the temperature distribution of every key components are obtained. Then the postulated reactor accidents for heat pipe cooled reactor, including power variation, single heat pipe failure and cooling channel blockage, are analyzed and evaluated. Results show that all the designed parameters satisfy the safety requirements. This work could provide reference to the design and application of the heat pipe cooled nuclear power source.

기사용 핵연료 저장조에 대한 열수력 해석 및 관련 인자의 영향 평가 (Thermal-Hydraulic Analysis and Parametric Study on the Spent Fuel Pool Storage)

  • Lee, Kye-Bock;Nam, Ki-Il;Park, Jong-Ryul;Lee, Sang-Keun
    • Nuclear Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.19-31
    • /
    • 1994
  • 기사용 핵연료 저장조에 대한 열수력 해석과 관련된 인자들이 열수력 해석에 미치는 영향에 대한 분석을 수행하였다. 기사용 핵연료에서 발생하는 붕괴열(decay heat)을 제거하기 위해 일어나는 자연 순환(natural circulation)현상을 모사하기 위해 단순화된 유동망(simplified flow network)해석 모델을 사용하였다. 기사용 핵연료 저장조의 각 셀에 저장되는 연료 집합체에서 발생하는 붕괴열을 제거하기 위해 흐르는 유량의 압력 손실량이 자연순환을 일으키는 밀도차이에 의해 생성되는 구동력(driving force)과 평형을 이루는 관계를 이용하여 지배 방정식을 유도하였다. 그러나 유량, 저항 계수, 붕괴열, 밀도 등의 변수들이 서로 종속 관계를 갖기 때문에 반복 계산을 통해 해를 얻게 된다. 본 해석을 적용한 영광 3, 4호기의 경우, 12채널을 고려하였고 사용되는 입력 (저항 계수, 붕괴열)을 보수적으로 결정하였다. 본 연구를 통해 영광 3, 4호기 기사용 핵연료 저장조의 열수력 특성을 구하였다. 또한 유동로를 따라 형성되는 유동 저항중에 기하학적 요인에 의한 압력 손실은, 기사용 핵연료 저장조의 경우 압력 용기내의 유동과 달리 천이 영역(transition region)이 존재하게 되므로 Reynolds수에 민감한 것을 알 수 있다. 간극 유동은 조밀화된 연료 집합체 (consolidated fuel assembly)가 아닌 경우 무시할 수 있었다.

  • PDF

열처리 조건에 따른 3C-SiC 박막을 이용한 그래핀 합성 (Synthesis of Graphene Using 3C-SiC Thin Films with Thermal Annealing Conditions)

  • 김강산;정귀상
    • 센서학회지
    • /
    • 제21권5호
    • /
    • pp.385-388
    • /
    • 2012
  • This paper describes the synthesis and characterization of graphene by RTA process. Amorphous 3C-SiC were deposited using APCVD for carbon source and Ni layer were employed for transition layer. Various parameters of the ramping speed, the annealing time and the cooling speed are evaluated for the optimized combination allowed for the reproducible fabrication of graphene using 3C-SiC thin film. For analysis of crystalline Raman spectra was employed. Transferred graphene shows a high IG/ID ratio of 2.73. SEM and TEM images show the optical transparency and 6 carbon network, respectively. Au electrode deposited on the transferred graphene shows linear I-V curve and its resistance is 358 ${\Omega}$.

Reliable Anisotropic Conductive Adhesives Flip Chip on Organic Substrates For High Frequency Applications

  • Paik, Kyung-Wook;Yim, Myung-Jin;Kwon, Woon-Seong
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2001년도 Proceedings of 6th International Joint Symposium on Microeletronics and Packaging
    • /
    • pp.35-43
    • /
    • 2001
  • Flip chip assembly on organic substrates using ACAs have received much attentions due to many advantages such as easier processing, good electrical performance, lower cost, and low temperature processing compatible with organic substrates. ACAs are generally composed of epoxy polymer resin and small amount of conductive fillers (less than 10 wt.%). As a result, ACAs have almost the same CTE values as an epoxy material itself which are higher than conventional underfill materials which contains lots of fillers. Therefore, it is necessary to lower the CTE value of ACAs to obtain more reliable flip chip assembly on organic substrates using ACAs. To modify the ACA composite materials with some amount of conductive fillers, non-conductive fillers were incorporated into ACAs. In this paper, we investigated the effect of fillers on the thermo-mechanical properties of modified ACA composite materials and the reliability of flip chip assembly on organic substrates using modified ACA composite materials. Contact resistance changes were measured during reliability tests such as thermal cycling, high humidity and temperature, and high temperature at dry condition. It was observed that reliability results were significantly affected by CTEs of ACA materials especially at the thermal cycling test. Results showed that flip chip assembly using modified ACA composites with lower CTEs and higher modulus by loading non-conducting fillers exhibited better contact resistance behavior than conventional ACAs without non-conducting fillers. Microwave model and high-frequency measurement of the ACF flip-chip interconnection was investigated using a microwave network analysis. ACF flip chip interconnection has only below 0.1nH, and very stable up to 13 GHz. Over the 13 GHz, there was significant loss because of epoxy capacitance of ACF. However, the addition of $SiO_2filler$ to the ACF lowered the dielectric constant of the ACF materials resulting in an increase of resonance frequency up to 15 GHz. Our results indicate that the electrical performance of ACF combined with electroless Wi/Au bump interconnection is comparable to that of solder joint.

  • PDF

A Study on the Thermal and Chemical Properties of Carbon Nanotube Reinforced Nanocomposite in Power Cables

  • Yang, Sang-Hyun;Jang, Hyeok-Jin;Park, Noh-Joon;Park, Dae-Hee;Yang, Hoon;Bang, Jeong-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권6호
    • /
    • pp.217-221
    • /
    • 2009
  • The use of the carbon nanotube (CNT) is superior to the general powder state materials in their thermal and chemical properties. Because its ratio of diameter to length (aspect ratio) is very large, it is known to be a type of ideal nano-reinforcement material. Based on this advantage, the existing carbon black of the semiconductive shield materials used in power cables can acquire excellent properties by the use of a small amount of CNTs. Therefore, we fabricated specimens using a solution mixing method. We investigated the thermal properties of the CNT, such as its storage modulus, loss modulus, and its tan delta using a dynamic mechanical analysis 2980. We found that a high thermal resistance level is demonstrated by using a small amount of CNTs. We also investigated the chemical properties of the CNT, such as the oxidation reaction by using Fourier transform infrared spectroscopy (FT-IR) made by Travel IR. In the case of the FT-IR tests, we searched for some degree of oxidation by detecting the carboxyl group (C=O). The results confirm a tendency for a high cross-linking density in a new network in which the CNTs situated between the carbon black constituent molecules show a bond using similar constructive properties.

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • 제39권3호
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

전자선 가교된 PBT의 충격 특성 및 내마모 특성 연구 (The Impact Properties and Wear Resistance of Polybutylene terephthalate (PBT) Cross-linked by Electron Beam Irradiation)

  • 신범식;고금진;전준표;김현빈;오승환;강필현
    • 방사선산업학회지
    • /
    • 제5권2호
    • /
    • pp.145-149
    • /
    • 2011
  • Poly(butylenes terephthalate) have made large strides in applications of injection, extrusion, and molding material due to their excellent thermal resistance and appropriate mechanical properties. However, PBT was not hard polymer but a soft polymer which caused low absorption of external energy and the defect of being easily broken with the strong impact. Thus, the electron beam irradiation was carried out over a range of irradiation doses from 100 to 1,000 kGy for enhancing the properties. The decreases of $T_m$, $T_c$, and enthalpy were observed as increasing the absorbed dose in the results of DSC analysis. The improvement in the impact strength of PBT was clearly observed as the absorbed dose was increased. This was probably due to the 3-dimensional network structures, resulting in increasing the absorption of impact energy. In addition, the wear properties had increased at higher than 300 kGy. The negative deviation of weight loss confirmed the improvement of the wear properties of PBT, as evidenced by SEM observation on the wear surfaces.

Preliminary design and assessment of a heat pipe residual heat removal system for the reactor driven subcritical facility

  • Zhang, Wenwen;Sun, Kaichao;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3879-3891
    • /
    • 2021
  • A heat pipe residual heat removal system is proposed to be incorporated into the reactor driven subcritical (RDS) facility, which has been proposed by MIT Nuclear Reactor Laboratory for testing and demonstrating the Fluoride-salt-cooled High-temperature Reactor (FHR). It aims to reduce the risk of the system operation after the shutdown of the facility. One of the main components of the system is an air-cooled heat pipe heat exchanger. The alkali-metal high-temperature heat pipe was designed to meet the operation temperature and residual heat removal requirement of the facility. The heat pipe model developed in the previous work was adopted to simulate the designed heat pipe and assess the heat transport capability. 3D numerical simulation of the subcritical facility active zone was performed by the commercial CFD software STAR CCM + to investigate the operation characteristics of this proposed system. The thermal resistance network of the heat pipe was built and incorporated into the CFD model. The nominal condition, partial loss of air flow accident and partial heat pipe failure accident were simulated and analyzed. The results show that the residual heat removal system can provide sufficient cooling of the subcritical facility with a remarkable safety margin. The heat pipe can work under the recommended operation temperature range and the heat flux is below all thermal limits. The facility peak temperature is also lower than the safety limits.