• Title/Summary/Keyword: Thermal Power Generation

Search Result 625, Processing Time 0.031 seconds

Analysis of HFC-245fa organic Rankine cycle for geothermal power generation (지열 발전을 위한 HFC-245fa 유기 랭킨 사이클의 성능해석)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Yoon, Hyung-Kee;Lee, Young-Soo;Ra, Ho-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • In this study, an ORC (Organic Rankine Cycle) is investigated for a low-temperature geothermal power generation by a simulation method. A steady-state simulation model is developed to analyze cycle's performance. The model contains a turbine, a pump, an expansion valve and heat exchangers. The turbine and pump are modelled by an isentropic efficiency. Simulations were carried out for the given heat source and sink inlet temperatures, and given flow rate that is based on the typical power plant thermal-capacitance-rate ratio. HFC-245fa is considered as a working fluid of the cycle. Simulation results, at the given secondary working fluids conditions, show that even though the power can be presented by both the evaporating temperature and the turbine inlet superheat, it depends on the evaporating temperature primarily.

  • PDF

The Trend of System Level Thermal Management Technology Development for Aero-Vehicles (항공기 시스템 레벨 열관리 기술개발 동향)

  • Kim, Youngjin;Son, Changmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Modern aircraft is facing the increase of power demands and thermal challenges. In accordance with the application of more electric technology and advanced mission requirement, aircraft system requires increase of power generation and it cause increase of internal heat generation. Simultaneously, restrictions have significantly been imposed to the thermal management system. Modern aircraft must maintain low radar observability and infra-red signature. In addition, new composite aircraft skins have reduced the amount of heat that can be rejected to the environment. The combination of these characteristics has increased the challenges faced by thermal management. In order to mitigate the thermal challenges, the concept of system level thermal management should be applied and new modeling and simulation tools need to be developed. To develop and utilize system level thermal management technology, three key points are considered. Firstly, the performance changes of subsystems and components must be assessed at an integrated thermal system. It is because that each subsystem and component interacts with other subsystems or components and it can directly effects on overall system performance. Secondly, system level thermal management requirements and solutions must be evaluated early in conceptual design process as vehicle and propulsion system configuration decisions are being made. Finally, new component level thermal management technologies must focus on reducing heat generation and increasing the availability of heat sinks.

High-Power LED Thermal Spreaders Design Using Pulsating Heat Pipe (진동형 히트파이프를 이용한 고출력 LED 조명 방열 설계)

  • Jang, Jeong-Wan;Kim, Jong-Soo;Ha, Soo-Jung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1379-1384
    • /
    • 2009
  • High power light emitting diode(LEDs), a strong candidate for the next generation general illumination applications are of interest. With major advantages of power saving, increased life expectancy and faster response time over traditional incandescent bulb, the LEDs are rapidly taking over many applications such as LCD backlighting, traffic light, automotive lighting, signage, etc. The increased electrical currents used to drive the LEDs have focused more attention on the thermal management because the efficiency and reliability of the solid-state lighting devices strongly depend on successful thermal management. There exist some problems that are caused by heat generation in the LED package, such as wire breakage, yellowing of epoxy resin, lifted chip caused by reflow of thermal paste chip attach and interfacial separation between LED package and silicon resin. The goal of this study is to analyze high power LED thermal properties of using pulsating heat pipe.

  • PDF

Economic Assessment of Solar Thermal Power System (태양열 발전시스템 경제성 분석)

  • Kim, Jin-Soo;Kang, Yong-Heack;Kim, Jong-Kyu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.25-29
    • /
    • 2008
  • Economic assessment of solar thermal power generation systems was carried out by calculating the levelized electricity cost. Four different commercial (or near commercial) solar thermal power systems (parabolic trough system, power tower system with saturated steam, power tower system with molten salts, and dish-stilting system) were considered for assessment. The assessment also included sensitivity analysis covering the effects of system capacity, direct normal insolation, and the system efficiency.

  • PDF

Influence of temperature gradient induced by concentrated solar thermal energy on the power generation performance of a thermoelectric module (집중 태양열에 의한 온도구배가 열전발전모듈의 출력 성능에 미치는 영향)

  • Choi, Kyungwho;Ahn, Dahoon;Boo, Joon Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.777-784
    • /
    • 2017
  • Energy harvesting through a thermoelectric module normally makes use of the temperature gradient in the system's operational environment. Therefore, it is difficult to obtain the desired output power when the system is subjected to an environment in which a low temperature gradient is generated across the module, because the power generation efficiency of the thermoelectric device is not optimized. The utilization of solar energy, which is a form of renewable energy abundant in nature, has mostly been limited to photovoltaic solar cells and solar thermal energy generation. However, photovoltaic power generation is capable of utilizing only a narrow wavelength band from the sunlight and, thus, the power generation efficiency might be lowered by light scattering. In the case of solar thermal energy generation, the system usually requires large-scale facilities. In this study, a simple and small size thermoelectric power generation system with a solar concentrator was designed to create a large temperature gradient for enhanced performance. A solar tracking system was used to concentrate the solar thermal energy during the experiments and a liquid circulating chiller was installed to maintain a large temperature gradient in order to avoid heat transfer to the bottom of the thermoelectric module. Then, the setup was tested through a series of experiments and the performance of the system was analyzed for the purpose of evaluating its feasibility and validity.

Optimal Scheduling in Power-Generation Systems with Thermal and Pumped-Storage Hydroelectric Units

  • Kim, Sehun;Rhee, Minho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.15 no.1
    • /
    • pp.99-115
    • /
    • 1990
  • This paper is concerned with the unit commitment problem in an electric power system with both thermal and pumped-storage hydroelectric units. This is a mixed integer programming problem and the Lagrangean relaxation method is used. We show that the relaxed problem decomposes into two kinds of subproblems : a shortest-path problem for each thermal unit and a minimum cost flow problem for each pumped-storage hydroelectric unit. A method of obtaining an incumbenet solution from the solution of a relaxed problem is presented. The Lagrangean multipliers are updated using both subgradient and incremental cost. The algorithm is applied to a real Korean power generation system and its computational results are reported and compaired with other works.

  • PDF

Power Generation Unit Modelling in Thermal Power Plant (서천화력 발전기 및 제어시스템 모델링)

  • Kim, Yong-Hak;Kim, Tae-Kyun;Choo, Jin-Bu;Joo, Joon-Young;Song, Seok-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.15-18
    • /
    • 2003
  • This paper provides the procedure to derive model parameters from the field tests. Since the accuracy of power system analysis depends on the accuracy of models used to represent the generation units, the reliability of power system analysis could be affected by parameters used in those models. The objective of this paper is to validate and update the models. So the field test had performed for thermal units and adjusting the variables to match with the measured values derived their model parameters. And the model parameters are verified by comparing the variables between models.

  • PDF

Analysis for Thermal Distribution of Low-voltage Condenser by the Variance of Voltage & Frequency (전압 및 주파수 변화에 따른 저압 콘덴서 열 분포 해석)

  • Kim, Jong-Gyeum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.43-49
    • /
    • 2010
  • Power capacitor has been used to compensate for the low power factor of inductive load and to reduce harmonics generated by the power conversion device with reactor. The increase of voltage and current and thermal generation are extremely hard on the life of condenser. Current will be increased, provided that voltage and frequency of condenser increase also. The increase of voltage and frequency justly extends thermal generation. Both act on insulation stress and can afford to premature fault In this paper, we measured thermal distribution of condenser with infrared rays camera in case of variance of voltage and frequency. We were assured that the increase of voltage and frequency produces high heat and exceedingly shortens the life of condenser.

Development of the annual power generation schedule package for various generation type system(I) (다양한 발전원 계통에서의 연간발전계획 전산화 시스템 개발(I))

  • Chu, Jin-Boo;Jeon, Dong-Hoon;Kim, Sung-Hak;Yoon, Sang-Hyun;Kim, Hoi-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.707-710
    • /
    • 1996
  • This paper is to build and develop the generation schedule program to provide a stable power supply and economic operation of power generation system. A practical algorithm is presented for solving the thermal unit commitment problem which is one of very important areas in economic operation of power system. This algorithm is based on priority ordering by the unit generation cost and it is shown that the operation cost of chosen sets of generators is the minimum. The proposed method is proven to be very practical, accurate and efficient in a KEPCO system.

  • PDF

A Study of Economic Generation Planning for operating Power systems with Dispersed Generation (분산형 전원의 배전계통 연계시 경제적 발전 계획 수립에 대한 연구)

  • Kim, Ji-Hong;Jung, Hyeon-Soo;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1453-1455
    • /
    • 1999
  • This paper presents an economical generation planning for operating power systems with dispersed generation. As dispersed generation introduced into an electric power distribution system, the power system will be complicated and have much variable aspects. So there is need for developing new generation scheduling. In this paper, the proposed method is tested for distribution system with two battery storage resources. Optimal generation planning of 15 thermal units in 24-hours is achieved by improved genetic algorithm. Also, to show its effectiveness, the results are compared with those of not including battery storage resources.

  • PDF