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Abstract

This paper is concerned with the unit commitment problem in an electric power
system with both thermal and pumped-storage hydroelectric units. This is a mixed
integer programming problem and the Lagrangean relaxation method is used. We
show that the relaxed problem decompcses into two kinds of subproblems ' a
shortest-path problem for each thermal unit and a minimum cost flow problem for
each pumped-storage hydroelectric unit. A method of obtaining an incumbent so-
lution from the solution of a relaxed problem is presented. The Lagrangean
multipliers are updated using both subgradient and incremental cost. The algorithm
is applied to a real Korean power generation system and its computational results
are reported and compaired with other works,
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1. Introduction

Electricity load pattern usually exhibits extreme variation between peak and off-peak

hours. If sufficient generation to meet the peak is kept on the line thrpughout the_ planning
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horizon (24-168 hours), it is probable that some units will be operating near their minimum
generation levels during the off-peak period. This implies that the thermal efficiency could
be very low. The problem of determining a schedule of which units should be taken off
and for how long is called the unit commitmeni problem. This problem has been the sub-
ject of considerable discussion in the power system literature.

An electric generating system has three types of units - thermal, hydro and
pumped-storage hydroelectric units. A pumped-storage hydroelectric unit is used
principally for storing electric enery. The normal operation of a pumped-storage unit
consists of pumping water into the upper reservoir during off-peak periods, such as nights
and on weekends, when the incremental cost of fossil energy is low. During periods of
peak load, water is released from the upper reservoir to generate energy, thus replacing
fossil energy of higher incremental cost.

Our main objective in this paper is to provide an efficient algorithm for the unit
commitment problem of a power system with both thermal units and pumped-storage
hydroelectric units. Hydro units are not considered.

The unit commitment problem is a combinatorial problem. Branch and bound method
(Ohuchi and Kaji (1975), Cohen and Yoshimura (1983)), dynamic programming method
(Lowery (1966), Zurn and Quintanna (1975:, Pang and Chen (1976)) and Benders’
partitioning method (Turgeon (1978)) have been used to solve this problem. These
methods can provide an accurate solution for a small system but they cannot handle a
system with a large number of units.

Recently, Muckstadt and Koenig (1977) applied the Langrangean relaxation method
to a system with thermal units. They showed that the relaxed problem decomposes into
single-generator subproblems and each subproblem becomes a shortest-path problem on
an acyclic network., Merlin and Sandrin (1933) improved the method of updating the
Lagrangean multipliers in the subgradient optinization procedure. Bertsekas et al (1983)
used the penalty function method in updating the Lagrangean multipliers. All these works
did not considered pumped-storage hydroelectric units.

A pumped-storage hydroelectric unit uses electricity from thermal units during

off-peak periods and generates electricity during peak periods. The resulting electricity
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load pattern for thermal unit system will then have lower peak load and higher off-peak
load than the original load pattern. This will change the optimal unit commitment schedule
of the thermal units and the inclusion of pumped-storage hydroelectric units into the unit
commitment problem is essential. Dynamic programming methods (Joy and Jenkins (19703,
Cobian (1971)), linear programming methods (Ko et al (1982)) and a heuristic method
(Le et al (1983)) have been used to solve this problem.

We extend the work of Muckstadt and Koenig to a system with thermal and
pumped-storage hydroelectiric units. We apply the Lagrangean relaxation method and
show that the relaxed problem decomposes into two kinds of subproblems :a shortest-path
problem for each thermal unit and a minimum cost flow problem for each pumped-storage
hydroelectric unit. Both are simple network problems and their efficient algorithms have
been well developed.

The Lagrangean relaxation method is much more powerful if it is possibel to find
a feasible solution of the original problem from the solution of the relaxed problem. In
this case we can find an incumbent solution and upper bound as well as lower bound.
The unit commitment problem has two kinds of coupling constraints - demand constraints
and spinning reserve constraints. If the solution of the relaxed problem satisfies the
spinning reserve constraints then we can easily {ind a feasible solution which also satisfies
the demand constraints. Qur computational experience for a real-case test problem shows
that about 10 iteration steps out of 28 iteraticns provide incumbent solutions.

We shall begin by formulating the unit commitment problem as a mixed integer
programming problem in Section 2. In Section 3, we apply the Lagrangean relaxation
method and show that the relaxed problem decomposes into simple network problems.
Section 4 provides the method of obtaining ar incumbent solution from the solution of
the relaxed problem and the method of updating the Lagrangean multipliers. In the last
section the computational results of our algorithm, applied to the real Korean power

generating system, is reported and compaired with others.
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2. Model formulation

For thermal units, we follow the assumptions and notations used in Muckstadt and
Koenig. When a thermal unit is committed t¢ operating, the unit’s output must be between
its minimum and maximum operating capacities. Let m. and M, respectively represent
these minimum and maximum operating capiicities, measured in mege-watts, for i=1, -,
I, where I denotes the number of thermal units in the system. A production cost curve
is defined on the feasible operating range for each unit. This curve is assumed to be
a convex, piecewise linear function. The slope of each segment corresponds to the
incremental production cost. Let K: be the number of linear segments in the production
cost curve for unit i, and let Mi; be the maximum amount of power that generator i can
produce at the k-th incremental production cost, g.,, for k=i, -, K; and i=1, -, L.

An integer variable x,, is used to indicate whether a specified thermal unit is operating
during a period. In particular, x,.=1 if thermal unit i is operating in period t and x,,=0
otherwise, where i=1, -, 1 and t=1, ---, T. The continuous variable V... represents the
proportion of the available capacity M,, thal is actually used throughout period t, where
k=1, -, K.

The total energy output from unit i in period t is

mx,. + kE:lM,kym,
assuming 0 <y,. <x.. Let w,.=1 if unit i is started in period t and w;, =0 otherwise;
z,=1 if unit i is shut down in period t and z:.=0 otherwise; ¢, be the start-up cost for
generator i ; d, be the shut down cost for generator i:g. be the cost of operating generator
i at its minimum capacity.

Assuming the planning horizon is divided into one hour interval, the unit commitment
problem for a thermal system is formulated as follows :
(PT)

T

1 X.
min X { X {cw.+dizio+gx00+ IMig vou))
i=1 k=1

t=1}

1 K.
s.t. Z(mixi+ XM.y..) 2D, for all t. (1)
1
2 Mixi. 2 R., for all t, 2)
=]
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(3)

0<¥ie $Xiv, Wie 2 Xiom Xiy o1, Zo 7 Xio o1~ X,
w20, 2220, x. € {0,1}, for all i,k and t,}

The demand constraint (1) implies that the total generated power should be greater
than or equal to the electricity demand, D., and the spinning reserve constraint (2) implies
that the total maximum capacity of thermal units which are on the line should be greater
than a specified minimum R.. For a detailed explanation of this model, see Muckstadt
and Koening (p. 392).

Now let us consider pumped-storage hydroelectric units. A pumped-storage
hydroelectric unit has two reservoirs - an upper reservoir and a lower reservoir. The upper
reservoir has a finite capacity while the lower reservoir has unlimited capacity. In a given
time period the unit may pump water from lower resservoir to upper reservoir or may
generate electricity by releasing water in the upper reservoir. The state equation for j~th
(j=1,--,]) pumped-storage hydroelectric un:t can be stated as follows :

$,0=8,.v1+p,.—q;, for t=1,--, T and

S;o=5%,,
where s,. is the amount of water in the upper reservoir of the unit j at the end of period
t, p;. is the amount of water pumped to the upper reservoir of unit j in period t, q;. is
the amount of water released from the upper reservoir to generate electricity at unit j
in period t and s%, is the amount of water in the upper reservoir at the beginning of the
planning horizon. Since it is not possible to siniultaneously pump and generate at a single
pumped-storage hydroelectric unit, we need a constraint p,q;.=0 for all j and t. Later,
it will be shown that this constraint can be 2liminated.

The generated power in a hydroelectric uni: is a function of the outflow and the head.
But in a pumped-storage hydroelectric unit the head variation due to the volume of outflow
is not critical since the head is significantly greater than the water level in the upper
reservoir. Thus we can assume that the gencrated power is a function of the outflow
only. Let a; be the electric power generated by releasing one unit of water from the upper
reservoir and b, be the electric power consumed to pump one unit of water at j-th
pumped-storage hydroelectric unit. The ratio a,/b, is called the efficiency of the

pumped-storage hydroelectric unit j. From the second law of thermal physics, a,;/b,{ 1.



104 Sehun Kim - Minho Rhee (AT Py SRE e

This number is, in most cases, around 70%.
The unit commitment problem for a system with thermal and pumped-storage

hydroelectric units is now formulated as follows :

(PTS)
min gl,: {é {cow, +dizi. tgX + éMlkgiky'Lkl}}
st Z(mxo+ EMuyad + £a,a,- £bpy 2 D, for all t, (4)
£Mx +ZbP, > R, for all t (5)
0¥V SXity, Wi 2 X Xive-t, Zie 2 Xineo1™ Xy,
w20, z..20, x..€{0,1}, for all i,k and t, } ©
$;/+=8,, .1~ Q;«t D, for all j and t. N
0<s,0<S,, for all j and t, (8)
0<q,.£Q; for all jandt, (9)
0<p,; <P, for all jandH, (10)
s;.=s%, s,=s%;, for all j, (11)

where S, is the capacity of the upper reservoir of the pumped-storage hydroelectric unit
i, Q, and P; are respectively the maximum generating capacity and pumping capacity of
the unit j, and s*, and s*, are respectively the initial and the final values for s,.. In the
demand constraints (4) the net effect of pumped-storage hydroelectric units is added.
In the spinning reserve constraints (5) the maximum generation capacity of
pumped-storage hydroelectric units is added to the spinning reserve since a
pumped-storage hydroelectric unit can generate electricity within a minute.

The feasible operation condition q,.p, =0 is guaranteed at an optimal solution of the
problem (PTS) from the following theorem :
(Theorem 1) At an optimal solution of (PTS) , for any time period t if

Vi » 0 for some i and k then q,.p,.=0 for any j.

(Proof) Suppose at an optimal solution q;, >, p, >0 and vu. > 0 for some j,t,i and k.
Find k* such that yux > 0 and y..=0 for all k > k*. Then for a sufficiently small € 0,
a solution constructed by replacing q;., p,. ard vu« respectively by (q;-¢€), (p,—¢€) and
(yum— (b,-a;) €/My-) is a feasible solution and has a strictly less objective function. This

is a contradiction.
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(Note 1) If y...=0 for all i and k then it is possible to have an optimal solution with q;. > 0
and p;. > 0. In this case we can always construct an another optimal solution with q;.p;.=0
by simply reducing q;. and p,. until either one becomes zero.

In a real operation, we need to consider the minimum down-time, minimum up-time,
time-dependent start-up cost and ramping hours (the start-up response time of a thermal
unit). All these constraints are not coupling constraints of different units. Inclusion of
these constraints does not change the Lagrangean relaxation and decomposition pro-
cedure. These constraints will only changes the subproblem for a thermal unit, In the
relaxation and decomposition procedure explained in the next section we do not consider
these constraints for simplicity of presentation. In section 4 we present computational

results of our algorithm for both case with and the case without these constraints.

3. Relaxation and Decomposition of the Model

In applying the Lagrangean relaxation method, the constraints (4) and (5) are selected
to be incorporated into the objective function. Let u. and v. be the nonnegative
Lagrangean multipliers corresponding to constraints (4) and (5), respectively. Then the
resulting relaxed porblem is
(PR)

L{u, v) =min ZI,' {}5} {cowi +d: zi.+g x“+EM.ygikym})
+ Z]ul(D‘ Zm i Z ZMlkym Za]q,.+)_','b D)
+ ZV (R. Zb P; ZM Xid)
subject to constraints (6)-(11).

This problem decomposes into I single thermal unit subproblems and ] single
pumped-storage hydroelectric unit subproblems of the following form: For i=1, -, 1,
(SPTi)

min tZi {cowi+diziot+ (g~vM,—umi)x. + kS“IM,k(g,k—u.)ym}

subject to constraints (6) for the given i, and for j=1, -, ],

(SPPj)

N
min 'é‘l {Utb_;p/t_utaJQJl}
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subject to constraints (7)-(11) for the given j.

Muckstadt and Koenig showed that the problem (SPTi) can be converted into a
shortest-path problem on an acyclic network (If minimum down-time, minimum up-time,
time-dependent start-up cost and ramping hours are included then this problem can be
solved using dynamic programming.) The subproblem for a pumped-storage unit j,
(SPPj), is a linear programming problem znd can be directly solved using the simplex
method. But this problem has a special structure and can be converted to a well-known
minimum cost flow problem in a capacitated directed network, Figure 1 shows the network
(subscript j is deleted).

Node 0 denotes the lower reservoir and node t (t=1, ---, T) denotes the upper reservoir
at period t. The first term on each arc is the variable representing the flow on the arc.
The first and second terms in the parenthesis on each arc denote the cost per unit flow
and the arc’s capacity. Then the problem (SPPj) is equivalent to finding a minimum cost
flow of this capacitated directed network such that the net inflow at node (1) is s¥, the
net outflow at node T is s¥ and the net inflow at node (0) is (s¥-s¥) (outfow, if negative).
In the remaining part of this paper we will assume that s¥=s*=s* to reduce the problem
into a minimum cost flow problem with a single source and a single sink (This is a quite
reasonable assumption in a practical planning. Even if s¥#s¥ we can convert this prob-
lem into a minimum cost flow problem with a single source and a single sink by simply
introducing an artificial node.) In this case s* is called the value of a flow. Out-of-Kilter
algorithm (Minty(1960), Fulkerson(1961}), dual method {Busacker and Gowen(1961)) and
primal method (Klein(1971)) are developed for the minimal cost flow problem. The algo-
rithm suggested in Lawler (1976, pp. 129-133) which is a combination of the dual method
and the primal method has been used here

The subproblem (SPPj) also generates &n optimal solution satisfying the operational
constraints, q,.p,.=0.

(Theorem 2) If u.> 0 then q,.p,,=0 at an ostimal solution of (SPPj).
(Proof) If q,> 0, p,> 0 and u.> 0 for some j and t then we can find another feasible so-
lution to (SPPj) with strictly less objective function by reducing both q,. and p;. by a

sufficiently small amount.
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(Not 2) If u,=0 then it is possible to have optimal solution with q,.> 0 and p;i> 0. In this
case we can construct another optimal solution with q,.p,,= 0 by simply reducing them

until ether one becomes zero.

So s;, (0.9)
> 1

Figure 1. Network representing the minimum cost flow problem

4, Algorithm

The Lagrangean relaxation method is much more powerful if it is possible to find
a feasible solution of the original problem from the solution of the relaxed problem. Then
the Lagrangean L (u, v) provides a lower bound while the feasible solution provides an
incumbent solution and an upper bound. In the unit commitment problem this is not always
possible. If the solution of the relaxed problem satisfies the spinning reserve constraints
(5) then we can always construct a solution which also satisfies the demand constraints

(4). Furthermore, this feasible solution provides the incremental cost of the thermal sys-
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tem which can be used in improving the Lagrangean multiplier updating procedure. Our

computational experience for a real-case test problem shows that about 10 itearations

out of a total of 28 iterations provide incumbent solutions.

For given Lagrangean multipliers {u.} anc {v.}, let {x* w*, z* y* p* g* s*) be the

solution of the subproblems (SPTi) and (SPI’i). There are three possile cases.

(Case 1) The solution of the subproblems satisfies both the demand constraints (4) and
the spinning reserve constraints (5).

(Case 2) The solution of the subproblems satisfies only the spinning reserve constraints
5).

(Case 3) The solution of the subproblems does not satisfy the spinning reserve constrinats
(5).

Finding a feasible solution

(Case 1) The solution of the subproblems is a feasible solution of the original problem.
This is a candidate for a new incumbent solution. If the multipliers, u. and v., and
constraints (4) and (5) satisfy the complementarity condition (Geoffrion(1974)), then
this is an optimal solution. Otherwise a better feasible solution can be found by using
the procedure explained in (Case 2).
(Case 2) In this case there are enough spinning reserve to cover demand and we can
find a good feasible solution of y... for the given values of {x*, w*, z* p* q* s*) by simply
solving the following economic dispatching problem for each time period t : Let I*= (i :
x¥ =1}.
(ED)  min X (g:+ éM”gikym)

K

s. t.l_EEZII;(mi+§IMka,k.)Z D¥,
lO S Ve £1, for all i and k,
where D"f=Dt—JZ=J{a,q*n+§b)‘D"§n-
This problem can be easily solved in the following greedy method.
(Algorithm for (ED))
Step 0 Let L:Df:ezl*. m;,

A={G k)| iel¥ k=1, -, K.}.

Step 1 Let giee= min g...

(Lk) €4
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If Miws <L, then let yme=1 and go to Step 2.
Otherwise, let yiei=Mie/L, g¥=gw+ and Stop.
Step 2 Let L=L - My« and A=A-(i* k*).
Go to Step 1.
The value g* is the incremental cost of the thermal system in time period t.
(Case 3) In this case we can not currently find a feasible solution.
The Lagrangean multipliers are updated irn the following method :

Updating Lagrangean multipliers u. and v,

(Case 1 and Case 2) The Lagrangean multiplier v. corresponding to the spinning reserve
constraint is updated using the usual subgradient optimization procedure (See Held et
al (1974) for classical exposition of the method and its implementation), The Lagrangean
multiplier u, corresponding to the demand constraint is updated using both subgradient
and incremental cost. Suppose the subgradient method updates u, to u%. Then a convex
combination of u* and the incremental cost obtained from problem (ED), g¥%, is used
as the new update value of u..
(Case 3) The conventional subgradient method is used to update both u. and v..

In order to start the algorithm we need to choose an initial value of u. and v.. To
choose good initial values we use the following method :
Initialization
(Initialization of u.) A heuristic unit commitment method based on a priority list is used
to find a feasible unit commitment solution. A priority list for thermal units is constructed
based on the efficiency at the minimum operaticn level, g:/m.. Then for each time period
t, we find i* such that I_Z,ijM,+ éb,-P, > R.. Let x;.=1 if i<i* and 0 otherwise. This is
a feasible unit commitment solution. Then we solve the economic dispatching problem
(ED) and find the incremental cost g*. This incremental cost is used as the initial value
for u..
(Initialization of v.) We use the following formula for the initial value of v.:

V.= (g, ~ 8tMie.) /M.

The numerator and the denominator are, respeciively, approximations of the net increases

of the fuel cost and the spinning reserve induced by introducing the next unit.
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Termination criterion

The algorithm terminates when the incumbent solution is within a prespecified tolerance
of the best lower bound from Lagrangean.

Figure 2 shows the flow chart of the whole algorithm,

4. Computational Results

Our algorithm has been programmed in FORTRAN IV. The example is a real Korean
power generating system comprising 39 thermal units (unclear, fossil fueled, gas
turbine)and 1 pumped-storage hydroelectric unit.

Most of the works about unit commitment with thermal units considered only one or
two days of planning horizon (See Table 1). But the unit commitment problem with
pumped storage units should be considered in a longer planning horizon. Figure 3 shows
a significant error which is frequently occurred when one considers the problem for a
one day planning horizon, Suppose the load pattern for two days is given as shown in

Figure 3. If we perform two separate one-day planning then it is optimal to pump at

'y D \
Load :

—_
[a- 28 o

18 24 6 18 24 6 12 18 h

Figure 3. A possible significant error of single-day planning
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Intialize u. and v,

;

Solve subpronlems

Update u. using
subgradient and

Update v, using
subgradient.

incremental cost.
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(SPTi) and {5PP))

Update the lower bound

Reserve constraints

are satisfied?

Demand constraints
are satisfied?

Update u. and v,
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No

Y
Solve Problen: (ED)
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Satisfy the Yes

termination
criteria?

> STOP

Figure 2. Flow chart of the algorithm
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A and C and generate at B and D from pumped-storage units. However, if we perform
two-day planning then it is optimal to pump oaly at A and generate only at D. Hence
in the two single-day planning an inefficient operations B and C are generated. In our
test problem we considered 168 hours (one week). Our computational results are

summarized and compaired with others in Table 1.

5. Summary and extensions

In this paper, we have presented an algorithm for the unit commitment problem with
thermal and pumped-storage hydroelectric units and shown that it finds very accurate
solutions (within 0.5 percent of optimal) very quickly. Muckstadt and Koenig used a
branch-and-bound method to find an optimal solution. This was the reason why they could
not solve a large-scale problem. But we could find an incumbent solution within . 5% of
optimal without using branch-and-bound method.

Hydro units are usually hydraulically coupled and it is not possible to decompose into
separate hydro subproblems unless we introduce more Lagrangean multipliers. Inclusion

of hydro units is under investigation.
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Table 1. Computational Results
Number of Number of Number of Error CPU time
thermal pumed-storage Planning Tolerance (seconds)
Units Units periods (%)
Ours"
Case 1 39 1 168 27 201%
Case 2 39 2 168 .32 193"
Case 3 39 1 168 47° 497%
Muckstadt,
et al.? 15 0 12 1.7 27.19"
(largest
two cases) 15 0 12 .57 >60. 0"
Bertsekas,
et al. 200 0 24 .27 709%
(largest 200 0 24 .09" 732%
three cases) 200 0 24 .15 588"
Merlin
et al. ¥ 172 0 48 A42Y 120”

(1) Piecewise linear cost function is used.

Case 1: Time independent start-up cost, instantaneous start-up without minimum down-time

and minimum up-time.

Case 2: Same as the Case 1 except that one artificial pumped-storage hydroelectric unit

is added.

Case 3: Time dependent start-up cost, with ramping hours, minimum down-time and minimum

up-time.

(2) Piecewise linear cost function is used. Branch-and-bound method is used to find an incumbent

solution.

(3) Linear cost function is used.

(4) Realized error bound.

(5) Pre-specified error tolerance,

(6) CDC CYBER 170/845

(7) IBM 370/168
{8) VAX-11/780
(9) IBM 3081
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