• 제목/요약/키워드: Thermal Power Generation

검색결과 625건 처리시간 0.027초

하동화력 방수로 조류식발전 개발규모 산정 및 수리특성 분석 (Estimation of Development Capacity Applicable to Current Power Generation System at the Discharge Channel of Hadong Thermal Power Plant)

  • 김지영;강금석;이대수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.121-124
    • /
    • 2006
  • 국내외에 아직 적용 실적이 없는 발전소의 해수방류수를 이용한 조류식발전시스템의 개발을 위하여 하동화력발전소 방수로에 시험용 조류식 발전시스템을 설계 및 제작하여 현장시험이 진행 중이며, 이를 확장하여 상업용 발전을 위한 총 개발 규모를 산정하고 경제성을 분석하였다. 조류식발전구조물의 형상 설계, 가이드 베인을 이용한 출력 조정을 통하여 방수로의 수류상태를 적절히 조절하여 설계하는 것이 가능할 것으로 판단되며, 조류식발전구조물 설치시 방수로의 수류특성 수치계산 결과로 판단할 때 발전출력에 의한 에너지 회수뿐만 아니라 조류식발전구조물의 단면축소 효과 및 수두손실이 방수로의 수위 변화에 상당한 규모로 영향을 주고 있음을 확인하였다. 조류식발전구조물 설치 이전의 유속 관측 결과를 이용하여 발전량을 산정한 경우 소수력발전 단가 적응시 경제성이 떨어지지만, 조류식발전시스템의 설치시 유속 증가 효과가 나타날 뿐만 아니라 가이드 베인 등을 이용하여 발전량 증대를 꾀하면 충분한 경제성을 확보할 수 있는 조류식발전시스템의 설치가 가능할 것으로 판단된다.

  • PDF

하동화력발전소 방수로 조류식 발전량 산정 및 시스템 설계 (Capacity Estimation and System Design of Current Power Generation at the Discharge Channel of Hadong Thermal Power Plant)

  • 강금석;김지영;이대수;이광수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.509-512
    • /
    • 2006
  • 국내 대형 기력발전단지에서 냉각수로 사용되고 방류되는 해수는 약 150cms로 (100Mwe 당 약 5cms) 약 3,000kW 이상의 수력에너지를 보유하고 있으나, 현재 활용되지 못하고 그대로 해양으로 방류되고 있다. 발전소 방수로는 흐름조건이 비교적 균일하고, 파랑 내습이 없으며 부유사 해조류, 부유물 충돌 등의 문제가 발생하지 않아 자연 해양조건보다 조류력 발전에 매우 유리하나 수심이 낮고, 순환수 계통에의 영향으로 다수의 수차를 설치하기는 어려운 조건을 지니고 있다. 따라서, 인공수로의 균일하고 양호한 흐름조건에 적합한 보다 경제적인 수차를 개발하고, 발전량을 증대하기 위한 수차 배치 기술, 수차 및 발전기 지지구조물의 설계 기술, 계통 연결기술 등을 개발할 필요가 있으며, 이를 위하여 시험용 조류식 발전시스템을 제작하여 수차의 성능 및 전체 발전시스템의 성능을 평가하여 발생되는 문제점을 해결하고자 한다. 본 연구에서는 시험용 조류식 발전시스템을 하동화력발전소 방수로에 적용하기 위하여 현장 특성 분석, 형식 선정, 발전량 산정 등의 시스템 설계를 수행하였다.

  • PDF

An Empirical Study on the Operation of Cogeneration Generators for Heat Trading in Industrial Complexes

  • Kim, Jaehyun;Kim, Taehyoung;Park, Youngsu;Ham, Kyung Sun
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권3호
    • /
    • pp.29-39
    • /
    • 2019
  • In this study, we introduce a model that satisfies energy efficiency and economical efficiency by introducing and demonstrating cogeneration generators in industrial complexes using various actual data collected at the site. The proposed model is composed of three scenarios, ie, full - time operation, scenario operated according to demand, and a fusion type. In this study, the power generation profit and surplus thermal energy are measured according to the operation of the generator, and the thermal energy is traded according to the demand of the customer to calculate the profit and loss including the heat and evaluate the economic efficiency. As a result of the study, it is relatively profitable to reduce the generation of the generator under the condition that the electricity rate is low and the gas rate is high, while the basic charge is not increased. On the contrary, if the electricity rate is high and the gas rate is low, The more you start up, the more profit you can see. These results show that even a cogeneration power plant with a low economic efficiency due to a low "spark spread" has sufficient economic value if it can sell more than a certain amount of heat energy from a nearby customer and adjust the applied power through peak management.

분산형전원의 계통연계 기술에 관한 연구 (A Study on the Interconnection technology to Power System of the Dispersed Stroage and Generation System (DSG))

  • 노대석;김호용;김응상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.126-129
    • /
    • 1992
  • Compared to other sources of electricity such as Thermal and Nuclear power plant, dispersed storage and generation system (DSG) is environmentally clean, quiet and efficient, thus this source is expected to be introduced In urban area by the utilities and customers. If a great number of DSG will be applied to electric power system in the rear future (around 2000, in Korea), these will give a great influence on the existing power system. In other words, the interconnection to electric power system of these source may bring many problems such as system operation, protection coordination, and service quality related with voltages (110${\pm}$6V, 220${\pm}$13V), harmonics (5%) and pour factor (90% over). So, this analysis of the interconnection to power system of DSG is required

  • PDF

EXCITATION SYSTEM MODERNIZATION OF THERMAL POWER PLANT

  • Kim, Chan-Ki;Kim, Jang-Mok;Rhew, Ho-Sun
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 F
    • /
    • pp.2024-2026
    • /
    • 1998
  • Many power plants built 20-30 years ago are facing problems associated with the excitation system used for controlling generator output voltage. After years of reliable operation, generation is experiencing increased down time due to maintenance associated with the exciting excitation equipment. Reliability of the excitation system has become an issue, especially where many of these generation plants may be critical to the internal processes used for manufacturing. Wear out mechanisms such as those associated with the wire wound rheostat the electromechanical voltage regulator, insulation failures of the rotating exciter and commutator deterioration have become real problems typical of many older installations. These are some of the issues that are affecting system reliability for older power plants. This paper will address typical problems associated with the old excitation systems and the justification for a replacement static excitation system used in many Paper Mills.

  • PDF

미분탄 연소의 감시 관리를 위한 화염영상 감시 및 발전용 보일러 적용시험 (The Flame Image Observation for Monitoring Management of Pulverized Coals Firings and its Feasibility Test to Boilers for Thermal Power Plant)

  • 백운보
    • 한국정밀공학회지
    • /
    • 제25권1호
    • /
    • pp.92-98
    • /
    • 2008
  • The flame image observation and analysis has been investigated for combustion monitoring and management of the pulverized coal firing for thermal power plant, especially for lower nitrogen oxide generation and safer operation. We aimed at obtaining the relationship between burner flame image information and emissions of nitrogen oxide and unburned carbon in furnace utilizing the flame image processing methods, by which we quantitatively determine the conditions of combustion on the individual homers. Its feasibility test was undertaken with Samchonpo thermal power plant #4 unit which has 24 burners, through which the system was observed to be effective for evaluating the combustion conditions and continuous monitoring to prevent future loss of ignition.

열전소자를 활용한 도로구조물에서의 에너지 하베스팅 기초 연구 (Fundamental Study of Energy Harvesting using Thermoelectric Module on Road Facilities)

  • 이재준;김대훈;이강휘;임재규;이승태
    • 한국도로학회논문집
    • /
    • 제16권6호
    • /
    • pp.51-57
    • /
    • 2014
  • PURPOSES : An conventional method for electric power generation is converting thermal energy into mechanical energy then to electrical energy. Due to environmental issues such as global warming related with $CO_2$ emission etc., were the limiting factor for the energy resources which resulting in extensive research and novel technologies are required to generate electric power. Thermal energy harvesting using thermoelectric generator is one of energy harvesting technologies due to diverse advantages for new green technology. This paper presents a possibility of application of the thermoelectric generator's application in the direct exchange of waste solar energy into electrical power in road space. METHODS : To measure generated electric power of the thermoelectric generator, data logger was adopted as function of experimental factors such as using cooling sink, connection methods etc. Also, the thermoelectric generator、s behavior at low ambient temperature was investigated as measurement of output voltage vs. elapsed times. RESULTS : A few temperature difference between top an bottom of the thermoelectric generator is generated electric voltage. Components of an electrical circuit can be connected in various ways. The two simplest of these are called series and parallel and occur so open. Series shows slightly better performance in this study. An installation of cooling sink in the thermoelectric generator system was enhanced the output of power voltage. CONCLUSIONS : In this paper, a basic concepts of thermoelectric power generation is presented and applications of the thermoelectric generator to waste solar energy in road is estimated for green energy harvesting technology. The possibility of usage of thermoelectric technology for road facilities was found under the ambient thermal gradient between two surfaces of the thermoelectric module. An experiment results provide a testimony of the feasibility of the proposed environmental energy harvesting technology on the road facilities.

New Boron Compound, Silicon Boride Ceramics for Capturing Thermal Neutrons (Possibility of the material application for nuclear power generation)

  • Matsushita, Jun-ichi
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.15-15
    • /
    • 2011
  • As you know, boron compounds, borax ($Na_2B_4O_5(OH)_4{\cdot}8H_2O$) etc. were known thousands of years ago. As for natural boron, it has two naturally occurring and stable isotopes, boron 11 ($^{11}B$) and boron 10 ($^{10}B$). The neutron absorption $^{10}B$ is included about 19~20% with 80~81% $^{11}B$. Boron is similar to carbon in its capability to form stable covalently bonded molecular networks. The mass difference results in a wide range of ${\beta}$ values between the $^{11}B$ and $^{10}B$. The $^{10}B$ isotope, stable with 5 neutrons is excellent at capturing thermal neutrons. For example, it is possible to decrease a thermal neutron required for the nuclear reaction of uranium 235 ($^{235}U$). If $^{10}B$ absorbs a neutron ($^1n$), it will change to $^7Li+^1{\alpha}$ (${\alpha}$ ray, like $^4He$) with prompt ${\gamma}$ ray from $^{11}B$ $^{11}B$ (equation 1). $$^{10}B+^1n\;{\rightarrow}\;^{11}B\;{\rightarrow}\; prompt \;{\gamma}\;ray (478 keV), \;^7Li+4{\alpha}\;(4He)\;\;\;\;{\cdots}\; (1)$$ If about 1% boron is added to stainless steel, it is known that a neutron shielding effect will be 3 times the boron free steel. Enriched boron or $^{10}B$ is used in both radiation shielding and in boron neutron capture therapy. Then, $^{10}B$ is used for reactivity control and in emergency shutdown systems in nuclear reactors. Furthermore, boron carbide, $B_4C$, is used as the charge of a nuclear fission reaction control rod material and neutron cover material for nuclear reactors. The $B_4C$ powder of natural B composition is used as a charge of a control material of a boiling water reactor (BWR) which occupies commercial power reactors in nuclear power generation. The $B_4C$ sintered body which adjusted $^{10}B$ concentration is used as a charge of a control material of the fast breeder reactor (FBR) currently developed aiming at establishment of a nuclear fuel cycle. In this study for new boron compound, silicon boride ceramics for capturing thermal neutrons, preparation and characterization of both silicon tetraboride ($SiB_4$) and silicon hexaboride ($SiB_6$) and ceramics produced by sintering were investigated in order to determine the suitability of this material for nuclear power generation. The relative density increased with increasing sintering temperature. With a sintering temperature of 1,923 K, a sintered body having a relative density of more than 99% was obtained. The Vickers hardness increased with increasing sintering temperature. The best result was a Vickers hardness of 28 GPa for the $SiB_6$ sintered at 1,923K for 1 h. The high temperature Vickers hardness of the $SiB_6$ sintered body changed from 28 to 12 GPa in the temperature range of room temperature to 1,273 K. The thermal conductivity of the SiB6 sintered body changed from 9.1 to 2.4 W/mK in the range of room temperature to 1,273 K.

  • PDF

온수 이용에 관한 열역학적 해석 (A thermodynamic analysis on the utilization of thermal water)

  • 이세균
    • 대한기계학회논문집
    • /
    • 제11권1호
    • /
    • pp.97-104
    • /
    • 1987
  • 본 논문에서는 순수한 액체상태의 온수 단위 질량을 대상으로 동력발생에서부 터 열펌프 까지의 가능한 응용을 고려하여 온도에 따른 최적 사용방법과 최대성능 발 휘시의 용량산정을 통하여 온수의 최적능력을 확인하고자 한다. 단 본 연구의 결과 는 순수히 열역하적인 것으로 경제적 관점에서 본다면 다소 다른 견해가 있을 수 있겠 으나 열역학적 및 경제적 관점 사이의 관계 및 제2법칙의 역할의 중요성은 이미 여러 논문에서 충분히 거론된 것으로서 여기서 언급하지 않는다.

Space Charge Behavior of Oil-paper Insulation Thermally Aged under Different Temperatures and Moistures

  • Zhou, Yuan-Xiang;Huang, Meng;Chen, Wei-Jiang;Jin, Fu-Bao
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1124-1130
    • /
    • 2015
  • Moisture and high temperature are the most important factors that lead to the ageing of oil-paper insulation, but the research about space charge characteristics of oil-paper insulation does not take the combined effect of ambient temperature, moisture and thermal ageing into account. The pulsed electroacoustic (PEA) method was used to investigate the influence of moisture and temperature on space charge characteristics of oil paper at different ageing stages. The results showed that moisture could speed up formation of space charge in oil paper when water concentration was low, but the formation was restrained if the water concentration was high. At the beginning of thermal ageing, heterogeneous charge accumulation had predominance, but it gradually changed to homogeneous charge injection with ageing. It was believed that moisture concentration could speed up ageing and enhance charge accumulation on one hand, and accelerate or slow down the establishment speed of space charge on the other hand, therefore, charge accumulation type changed with ageing. The more seriously the oil-paper insulation was thermally aged, the deeper the trap energy level was, hence more space charge was trapped, which could be speeded up by increasing the ageing temperature, but the effect of ambient temperature did not fit the Arrhenius law.