• Title/Summary/Keyword: Thermal Exposure

Search Result 519, Processing Time 0.028 seconds

Characteristic and Adhesive Strength Change by Heat Treatment of the Plasma Sprayed $ZrO_{2}$- Thermal Barrier Coatings(TBC) (플라즈마 용사된 $ZrO_{2}$-단열 코팅층의 특성 및 열처리에 따른 접합강도변화)

  • Kim, Byoung-Hee;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.505-512
    • /
    • 1998
  • In this study, two-layer thermal barrier coatings composed of plasma sprayed 0.3mm $ZrO_2(8wt% Y_2o_3)$ ceramic coating layer and O.lmm $NiCrAlCoY_20_3$ bond coating layer on AISI 316 were investigated microstructure of the coating, oxidation of the metallic bond coating and adhesive strength to evaluate the durability of coating layer after cyclic and isothermal test at 90$0^{\circ}C$. And quantitative phase analysis of $ZrO_2(8wt% Y_2o_3)$ ceramic coating was performed as a function of thermal exposure time using XRD technique. The results showed that the amount of m - 2rO, phase in the coating was slightly increased with increasing thermal exposure time at 90$0^{\circ}C$. The c/a ratio of t' - $ZrO_2$ in the as-sprayed coating was 1.0099 and slightly increased to 1.0115 after 100 hours heat treatment. It was believed that $Y_2O_3$ in high yttria tetragonaJ(t') was transformed to low yttria tetragonaJ(t) by $Y_2O_3$ diffusion with increasing thermal exposure time. The adhesive strength was gradually decreased as thermal exposure time increased. After the isothermal test, the failure predominantly occured in ceramic coating layer. On the other hand. the specimens after cyclic thermal test were mostly failed at bond coating/ceramic coating interface. The failure was oeeured by decreasing the bond strength between bond coating and oxide scale which were formed by oxidation of the metallic elements within bond coating and by thermal stress due to thermal expansion mismatches between the oxide scale and ceramic coating.

  • PDF

Temperature Regulation of the Young and the Aged during Hands and Feet Exposure to the Cold (한랭환경에서 손발노출에 의한 청년과 노인의 체온조절반응 비교)

  • ;W.L. Kenney
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.7
    • /
    • pp.963-968
    • /
    • 1998
  • A study was conducted to investigate the effect of cooling hands of feet on human thermoregulation in the cold. Eight young (22$\pm$1 yr) and eight aged (69$\pm$4 yr) men volun-teered as subjects They stayed at 1$0^{\circ}C$ in the supine posture during the experiment which included hands or feet exposure to the air for 20 minutes. Hand Exposure (HE) and Foot Exposure (FE) were conducted in radomized order and the baseline was kept before HE and FE. Core temperatures, limb skin temperatures adn thermal sensations were measured. Obtained data were analyze using t-test and correlation. Rectal and esophageal tem-peratures increased in the young (YG) and in aged (AG). Change rate of esophageal temperature (Tes) was maintained higher during FE than HE while rectal temperature showed no differences between YG and AG, and between HE and FE. Hand and foot skintemperature in YG and AG decreased similarly during HE and Fe. Forearm skin temperature during HE decreased while leg skin temperature during FE showed no change HE and Fe. It was concluded that the lower cooling. Furthermore, the increase of Tes was greater in young men than aged men. It is also suggested that the wearing behavior can be differently modified between young and aged men.

  • PDF

A Review and Analysis of the Thermal Exposure in Large Compartment Fire Experiments

  • Gupta, Vinny;Hidalgo, Juan P.;Lange, David;Cowlard, Adam;Abecassis-Empis, Cecilia;Torero, Jose L.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.345-364
    • /
    • 2021
  • Developments in the understanding of fire behaviour for large open-plan spaces typical of tall buildings have been greatly outpaced by the rate at which these buildings are being constructed and their characteristics changed. Numerous high-profile fire-induced failures have highlighted the inadequacy of existing tools and standards for fire engineering when applied to highly-optimised modern tall buildings. With the continued increase in height and complexity of tall buildings, the risk to the occupants from fire-induced structural collapse increases, thus understanding the performance of complex structural systems under fire exposure is imperative. Therefore, an accurate representation of the design fire for open-plan compartments is required for the purposes of design. This will allow for knowledge-driven, quantifiable factors of safety to be used in the design of highly optimised modern tall buildings. In this paper, we review the state-of-the-art experimental research on large open-plan compartment fires from the past three decades. We have assimilated results collected from 37 large-scale compartment fire experiments of the open-plan type conducted from 1993 to 2019, covering a range of compartment and fuel characteristics. Spatial and temporal distributions of the heat fluxes imposed on compartment ceilings are estimated from the data. The complexity of the compartment fire dynamics is highlighted by the large differences in the data collected, which currently complicates the development of engineering tools based on physical models. Despite the large variability, this analysis shows that the orders of magnitude of the thermal exposure are defined by the ratio of flame spread and burnout front velocities (VS / VBO), which enables the grouping of open-plan compartment fires into three distinct modes of fire spread. Each mode is found to exhibit a characteristic order of magnitude and temporal distribution of thermal exposure. The results show that the magnitude of the thermal exposure for each mode are not consistent with existing performance-based design models, nevertheless, our analysis offers a new pathway for defining thermal exposure from realistic fire scenarios in large open-plan compartments.

Effect of the Thickness and the Annealing Conditions of the Catalytic Ni Films on the Graphene Films Grown by a Rapid-Thermal Pulse CVD (Rapid-Thermal Pulse 화학증착법에 의해 증착된 그래핀 박막에서 촉매금속 Ni의 두께 및 열처리 조건의 영향)

  • Na, Sin-Hye;Yoon, Soon-Gil
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.78-82
    • /
    • 2011
  • Mono- and few-layer graphenes were grown on Ni thin films by rapid-thermal pulse chemical vapor deposition technique. In the growth steps, the exposure step for 60 s in $H_2$ (a flow rate of 10 sccm (standard cubic centimeters per minute)) atmosphere after graphene growth was specially established to improve the quality of the graphenes. The graphene films grown by exposure alone without $H_2$ showed an intensity ratio of $I_G/I_{2D}$ = 0.47, compared with a value of 0.38 in the films grown by exposure in H2 ambient. The quality of the graphenes can be improved by exposure for 60 s in $H_2$ ambient after the growth of the graphene films. The physical properties of the graphene films were investigated for the graphene films grown on various Ni film thicknesses and on 260-nm thick Ni films annealed at 500 and $700^{\circ}C$. The graphene films grown on 260-nm thick Ni films at $900^{\circ}C$ showed the lowest $I_G/I_{2D}$ ratio, resulting in the fewest layers. The graphene films grown on Ni films annealed at $700^{\circ}C$ for 2 h showed a decrease of the number of layers. The graphene films were dependent on the thickness and the grain size of the Ni films.

Effect of water scarcity during thermal-humidity exposure on the mineral footprint of sheep

  • Nejad, Jalil Ghassemi;Lee, Bae-Hun;Kim, Ji-Yung;Park, Kyu-Hyun;Kim, Won-Seob;Sung, Kyung-Il;Lee, Hong-Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.1940-1947
    • /
    • 2020
  • Objective: Combination of two stressors on alteration of mineral footprints in animals needs due attention to meet maximum production and welfare, particularly in grazing sheep. This study tested whether ewes (Ovis aries) exposed to water deprivation and thermal-humidity stressors had altered mineral footprints in their wool, serum, urine, and feces. Methods: Nine ewes (age = 3 years; mean body weight = 41±3.5 kg) were divided among a control group with free access to water, and treatment groups with water deprivation lasting either 2 h (2hWD) or 3 h (3hWD) after feeding. Using a 3×3 Latin square design, animals were assigned to treatment groups for three sampling periods of 21 days each (n = 9). Blood was collected by jugular venipuncture. Wool was collected at the end of periods 2 and 3. Metabolic crates designed with metal grated floors were used for urine and feces collection. We measured sodium (Na), magnesium (Mg), phosphorus (P), chloride (Cl), calcium (Ca), manganese (Mn), copper (Cu), iron (Fe), and zinc (Zn). Results: The wool mineral levels did not differ between the treatment groups, although K was marginally lower (p = 0.10) in the 2hWD group. The serum and urine mineral levels did not differ between the treatments (p>0.05). Fecal K was significantly lower in the 2hWD group than in the other groups (p≤0.05). Conclusion: In conclusion, water deprivation and thermal-humidity exposure altered the excretion of K, but not of other minerals, in the wool, urine, feces, or serum of ewes. Thus, no additional mineral supplementation is needed for water deprived ewes during thermalhumidity exposure.

Electro-optic Characteristics on Photoaligned TN Cell using Photopolymer Based Hydroxy Aromatic Polyimide (Hydroxy Aromatic Polyimide계 광폴리머 표면을 이용한 광배향 TN 셀의 전기광학 특성)

  • Lee, Whee-Won;Hwang, Jeoung-Yeon;Choi, Sung-Ho;Suh, Dong-Hack;Seo, Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.924-928
    • /
    • 2005
  • We synthesized the two types of photoalignment material of high thermal resistance with hydroxyl aromatic polyimide, and studied the liquid crystal (LC) aligning capabilities on the photopolymer layers. Also, electro-optical (EO) performances for the twisted-nematic (TN)-liquid crystal display (LCD) photoaligned with linearly polarized UV exposure were investigated. A good LC alignment with UV exposure on the two types of photopolymer surface can be obtained. The Voltage-transmittance (V-T) curve in the photoaligned TN cell with UV exposure was different from two type. The response time of photoaligned TN cell was measured about 21 ms in two alkyl chain and about 15 ms in four alkyl chain.

Variation of Alloying Element Distribution and Microstructure due to Microsegregation in Ni-base Superalloy GTD 111 (니켈기 초내열 합금 GTD 111에서 편석에 의한 합금원소 분포 및 미세조직 변화)

  • Choi, Baig-Gyu;Kim, In-Soo;Do, Jeong-Hyeon;Jung, Joong-Eun;Jo, Chang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.35 no.6
    • /
    • pp.170-177
    • /
    • 2015
  • Segregation during solidification and homogenization during thermal exposure in GTD 111 were investigated. The microstructures of as-cast, standard heat-treated, and thermally exposed specimens were observed by SEM. A compositional analysis of each specimen was conducted by EDS. The dendrite core was enriched in W and Co, though lower levels of Ti and Ta were observed. An unexpected phase, in this case like the ${\eta}$ phase, was observed due to segregation near the ${\gamma}-{\gamma}^{\prime}$ eutectic in the standard heat-treated specimen. Segregation also induced microstructural evolution near the ${\gamma}-{\gamma}^{\prime}$ eutectic during the standard heat treatment. A quantitative analysis and microstructural observations showed that the thermal exposure at a high temperature enhanced the chemical homogeneity of the alloy.

Corrosion behaviors of 18Cr Stainless Steels in Selective Catalytic Reduction Environments (Selective Catalytic Reduction (SCR) 환경에서 18% 크롬 스테인리스강의 부식 거동)

  • Heesan Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.175-186
    • /
    • 2023
  • Effects of high-temperature environment and low-temperature environment on corrosion behaviours of 18Cr stainless steels (type 304L, type 441) in simulated selective catalytic reduction (SCR) environments were studied using weight loss test in each environment and rust analysis. With time to exposure to the high-temperature environment, type 441 was more resistant to corrosion than type 304L due to both higher diffusivity of Cr and lower thermal expansion coefficient in α-iron. The former provides a stable protective Cr2O3 layer. The latter leaded to low residual stress between scale and steel, reducing the spallation of the scale. With time to exposure to the low-temperature environment, on the other hand, type 304L was more resistant to corrosion than type 441. The lower resistance of type 441 was caused by Cr-depleted zone with less than 11% formed during the pre-exposure to a high-temperature environment, unlike type 304L. It was confirmed by results from the crevice corrosion test of sensitised 11Cr steel. Hence, to achieve higher corrosion resistance in simulated SCR environments, ferritic stainless steels having lower thermal expansion coefficient and higher diffusivity of Cr but containing more than 18% Cr are recommended.

Effect of Thermal Aging on The Strength of Laminate Composites Structure (라미네이트 강도 특성에 미치는 Thermal Aging의 영향)

  • 정연운;김국진;한중원;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.24-28
    • /
    • 2002
  • Composite reinforced fiber materials are used in lots of fields such as a part of aeronautic space, ship, machinery and so on because can make structure wished for necessary condition by control fiber direction and laminated sequence. As the use of advanced composites increase, specific techniques have been developed to repair changed composite structures. In order to repair the damaged part production high quality composite reinforced fiber are completed by control the surrounding temperature and press in autoclave. The quality is influenced heat exposure degree by chemical reaction for precessing. This study considerated influence limit of using by repair structure part and change of properties according to heat exposure degree for repairing.

  • PDF

Combined Effects of PMV and Acoustics on Indoor Environmental Perception (PMV와 음환경의 복합 작용이 실내 환경 지각에 미치는 영향)

  • Yang, Wonyoung
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.135-142
    • /
    • 2016
  • Purpose: The purposes of this paper are to investigate effects of indoor thermal environment on acoustical perception and effects of acoustics on indoor thermal perception, and to understand basic human perception on indoor environment. Method: Subjective assessment was performed in an indoor environmental chamber with 24 university students. Thermal conditions with PMV -1.53, 0.03, 1.53, 1.83 were simulated with a VRF system, a humidifier, a dehumidifier, and a ventilation system. Six noise sources - Cafe, Fan, Traffic, Birds, Music, Water- with sound levels of 45, 50, 55, 60 dBA were played for 2 minutes in random order. Temperature sensation, temperature preference, humidity sensation, humidity preference, noisiness, loudness, annoyance, and acoustic preference were assessed using bipolar visual analogue scales. The ANOVA and Turkey's post hoc test were used for data analysis. Result: Thermal environmental perceptions were not altered through 2 minutes noise exposure. Acoustical perceptions were altered by thermal conditions. The results were consistent with previous papers, however, the noise exposure time should be carefully considered for further development.