Acknowledgement
This work is part of the EPSRC funded Real Fires for the Safe Design of Tall Buildings project (Grant: No. EP/J001937/1). Additional funding support was provided from the RFCS funded TRAFIR project (Grant No. 754198). We thank all those involved in the large-scale experiments that underpin this paper. In particular, we extend our thanks (in no particular order) to Dr Johan Sjostrom, Dr Stephen Welch, Dr Simo Hostikka, Dr Frantisek Wald and Dr Kamila Cabova for assistance in accessing older data sets. We are grateful to Prof. Bart Merci and Prof. Ali Rangwala for their comments on the first author's PhD thesis, which has helped improve this paper. We acknowledge helpful contributions from Ian Pope, Elhalm Saffari and Dr Felix Weisner regarding the data processing and presentation. The thoughts and concepts expressed in this paper have resulted from extensive discussions with numerous individuals over the years, to whom we are truly grateful.
References
- Abecassis-Empis, C., Reszka, P., Steinhaus, T., Cowlard, A., Biteau, H., Welch, S., Rein, G. and Torero, J. L. (2008). "Characterisation of Dalmarnock fire Test One", Exp. Therm. Fluid Sci., 32(7), 1334-1343. https://doi.org/10.1016/j.expthermflusci.2007.11.006
- Ahmadi, M. T., Aghakouchak, A. A., Shahmari, A., Modares, T., Mirghaderi, R., Tahouni, S., Garivani, S., Shahmari, A. and Epackachi, S. (2020). "Collapse of the 16-Story Plasco Building in Tehran due to Fire", Fire Technol., 56(2), 769-799. https://doi.org/10.1007/s10694-019-00903-y
- Alpert, R. L. (1972). "Calculation of response time of ceiling-mounted fire detectors", Fire Technol., 8(3), 181-195. https://doi.org/10.1007/BF02590543
- Alpert, R. L. (1975). "Turbulent ceiling-jet induced by large-scale fires", Combust. Sci. Technol., 11(5-6), 197-213. https://doi.org/10.1080/00102207508946699
- Behnam, B. (2019). "Fire Structural Response of the Plasco Building: A Preliminary Investigation Report", Int. J. Civ. Eng., 17(5), 563-580. https://doi.org/10.1007/s40999-018-0332-x
- Bergman, T. L., Lavine, A. S., Incropera, F. P. and DeWitt, D. P. (2011). Fundamentals of heat and mass transfer. 7th ed. Hoboken, NJ: Hoboken, NJ: Wiley.
- Charlier, M., Vassart, O., Dai, X., Welch, S., Sjostrom, J., Anderson, J. and Nadjai, A. (2020). "A simplified representation of travelling fire development in large compartment using CFD analyses", in Proc. 11th Int. Conf. Struct. Fire, 526-536.
- Clifton, C. G. (1996). Fire Models for Large Firecells.
- Cooke, G. M. E. (1998). Tests to Determine the Behaviour of Fully Developed Natural Fires.
- Council on Tall Buildings and Urban Habitat. (2021). CTBUH Year in Review : Tall Trends of 2020 Tall Buildings in 2020 : COVID-19 Contributes To Dip in Year-On-Year Completions.
- Cowlard, A., Bittern, A., Abecassis-empis, C. and Torero, J. L. (2013). "Some Considerations for the Fire Safe Design of Tall Buildings", Int. J. High-Rise Build., 2(1), 63-77.
- Dai, X., Welch, S. and Usmani, A. (2017). "A critical review of 'travelling fire' scenarios for performance-based structural engineering", Fire Saf. J., 91, 568-578. https://doi.org/10.1016/j.firesaf.2017.04.001
- Dai, X., Welch, S., Vassart, O., Cabova, K., Jiang, L., Maclean, J., Clifton, G. C. and Usmani, A. (2020). "An extended travelling fire method framework for performance-based structural design", Fire Mater., 44(3), 437-457. https://doi.org/10.1002/fam.2810
- Drysdale, D. (2011). An Introduction to Fire Dynamics. 3rd edn. Wiley.
- Engelhardt, M. D. M. D., Meacham, B., Kodur, V., Kirk, A., Park, H., Straalen;, van Straalen, I., Maljaars, J., van Weeren, K., De Feijter, R. and Both, K. (2013). "Observations from the Fire and Collapse of the Faculty of Architecture Building, Delft University of Technology", in Struct. Congr. 2013. ASCE Pittsburgh, 1-12.
- Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. (2002). EN 1991-1-2. CEN Brussels.
- Fernandez-Pello, A. C. and Hirano, T. (1983). "Controlling mechanisms of flame spread", Combust. Sci. Technol., 32(1-4), 1-31. https://doi.org/10.1080/00102208308923650
- Finney, M. A., Cohen, J. D., Forthofer, J. M., McAllister, S. S., Gollner, M. J., Gorham, D. J., Saito, K., Akafuah, N. K., Adam, B. A., English, J. D. and Dickinson, R. E. (2015). "Role of buoyant flame dynamics in wildfire spread", Proc. Natl. Acad. Sci. U. S. A., 112(32), 9833-9838.
- Fletcher, I. A. 1; Welch, S., Alvear, D., Lazaro, M., Capote, J. A. A., Alvear, ; and Lazaro, ; (2007). "Model-based analysis of a concrete building subjected to fire", in Proc. 4th Int. Work. Sructures Fire, 779-790. Available at: https://era.ed.ac.uk/handle/1842/1988.
- Gales, J. (2014). "Travelling Fires and the St. Lawrence Burns Project", Fire Technol., 50(6), 1535-1543. https://doi.org/10.1007/s10694-013-0372-3
- Gales, J., Chorlton, B. and Jeanneret, C. (2021). "The Historical Narrative of the Standard Temperature-Time Heating Curve for Structures", Fire Technol. Springer, 529-558.
- Gamba, A., Charlier, M. and Franssen, J.-M. (2020). "Propagation tests with uniformly distributed cellulosic fire load", Fire Saf. J., 117(103213), 1-11.
- Gann, R. G. (2005). Reconstruction of the fires in the world trade center towers, NIST NCSTAR.
- Gillie, M., Usmani, A., Rotter, M. and O'Connor, M. (2001). "Modelling of heated composite floor slabs with reference to the Cardington experiments", Fire Saf. J., 36(8), 745-767. https://doi.org/10.1016/S0379-7112(01)00038-8
- Gillie, M., Usmani, A. S. and Rotter, J. M. (2001). "A structural analysis of the first Cardington test", J. Constr. Steel Res., 57(6), 581-601. https://doi.org/10.1016/S0143-974X(01)00004-9
- Gross, D. and Robertson, A. F. (1965). "Experimental fires in enclosures", Symp. Combust., 10(1), 931-942. https://doi.org/10.1016/S0082-0784(65)80236-3
- Gupta, V. (2021). Open-plan compartment fire dynamics. The University of Queensland.
- Gupta, V., Hidalgo, J. P., Cowlard, A., Abecassis-Empis, C., Majdalani, A. H., Maluk, C. and Torero, J. L. (2021). "Ventilation effects on the thermal characteristics of fire spread modes in open-plan compartment fires", Fire Saf. J., 120(103072), 1-9.
- Gupta, V., Maluk, C., Torero, J. L. and Hidalgo, J. P. (2019). "Analysis of Convective Heat Losses in a Full-scale Compartment Fire Experiment", in Proc. 9th Int. Semin. Fire Explos. Hazards, 490-501.
- Gupta, V., Osorio, A. F., Torero, J. L. and Hidalgo, J. P. (2020). "Mechanisms of flame spread and burnout in large enclosure fires", Proc. Combust. Inst., 38(3), 4525-4533.
- Gupta, V., Torero, J. L. and Hidalgo, J. P. (2021). "Burning dynamics and in-depth flame spread of wood cribs in large compartment fires", Combust. Flame, 228, 42-56. https://doi.org/10.1016/j.combustflame.2021.01.031
- Haggkvist, A., Sjostrom, J. and Wickstrom, U. (2013). "Using plate thermometer measurements to calculate incident heat radiation", J. Fire Sci., 31(2), 166-177. https://doi.org/10.1177/0734904112459264
- Harmathy, T. Z. (1972). "A new look at compartment fires, Part I", Fire Technol., 8, 196-217. https://doi.org/10.1007/BF02590544
- Heidari, M., Kotsovinos, P. and Rein, G. (2019). "Flame extension and the near field under the ceiling for travelling fires inside large compartments", Fire Mater., 44(3), 421-436.
- Heidari, M., Rackauskaite, E., Bonner, M., Christensen, E., Morat, S., Mitchell, H., Kotsovinos, P., Turkowski, P., Wegrzynski, W., Tofilo, P. and Rein, G. (2020). "Fire experiments inside a very large and open-plan compartment: x-TWO", in 11th Int. Conf. Struct. Fire, 479-491.
- Hidalgo-Medina, J. P. and Hidalgo, J. P. (2015). Performance-Based Methodology for the Fire Safe Design of Insulation Materials in Energy Efficient Buildings. The University of Edinburgh.
- Hidalgo, J. P., Cowlard, A., Abecassis-Empis, C., Maluk, C., Majdalani, A. H., Kahrmann, S., Hilditch, R., Krajcovic, M. and Torero, J. L. (2017). "An experimental study of full-scale open floor plan enclosure fires", Fire Saf. J., 89, 22-40. https://doi.org/10.1016/j.firesaf.2017.02.002
- Hidalgo, J. P., Goode, T., Gupta, V., Cowlard, A., AbecassisEmpis, C., Maclean, J., Bartlett, A. I., Maluk, C., Montalva, J. M., Osorio, A. F. and Torero, J. L. (2019). "The Malveira fire test: Full-scale demonstration of fire modes in open-plan compartments", Fire Saf. J., 108 (102827).
- Hidalgo, J. P., Maluk, C., Cowlard, A., Abecassis-Empis, C., Krajcovic, M. and Torero, J. L. (2017). "A Thin Skin Calorimeter (TSC) for quantifying irradiation during large-scale fire testing", Int. J. Therm. Sci., 112, 383-394. https://doi.org/10.1016/j.ijthermalsci.2016.10.013
- Horova, K., Jana, T. and Wald, F. (2013). "Advances in Engineering Software Temperature heterogeneity during travelling fire on experimental building", Adv. Eng. Softw., 62-63, 119-130. https://doi.org/10.1016/j.advengsoft.2013.05.001
- Ingason, H. and Wickstrom, U. (2007). "Measuring incident radiant heat flux using the plate thermometer", Fire Saf. J., 42(2), 161-166. https://doi.org/10.1016/j.firesaf.2006.08.008
- Ingberg, S. H. (1928). "Tests of the Severity of Building Fires", Q. Natl. Fire Prot. Assoc., 22, 43-61.
- International Organization for Standardization. (1999). "ISO 834-1:1999, Fire-resistance tests -- Elements of building construction -- Part 1: General requirements".
- Jahn, W., Rein, G. and Torero, J. L. (2011). "A posteriori modelling of the growth phase Dalmarnock Fire Test One", Build. Environ., 46, 1065-1073. https://doi.org/10.1016/j.buildenv.2010.11.001
- Jowsey, A. (2006). Fire Imposed Heat Fluxes for Structural Analysis. The University of Edinburgh.
- Jowsey, A., Rein, G., Abecassis-empis, C., Cowlard, A. and Reszka, P. (2007). "An analytical approach to define surface heat fluxes to structural members in post-flashover fires", in Proc. 5th Int. Semin. Fire Explos. Hazards. Edinburgh: The University of Edinburgh, 692-701.
- Kawagoe, K. (1958). Fire behaviour in rooms, Rep. Build. Res. Inst.
- Khan, A. A., Usmani, A. and Torero, J. L. (2021). "Evolution of fire models for estimating structural fire-resistance", Fire Saf. J., 124, 103367. https://doi.org/10.1016/j.firesaf.2021.103367
- Killick, R., Fearnhead, P. and Eckley, I. A. (2012). "Optimal detection of changepoints with a linear computational cost", J. Am. Stat. Assoc., 107(500), 1590-1598. https://doi.org/10.1080/01621459.2012.737745
- Kirby, B. R., Wainman, D. E., Tomlinson, L. N., Kay, T. R. and Peacock, B. N. (1994). Natural Fires in Large Scale Compartments, A British Steel Technical, Fire Research Station Collaborative Project.
- Kirby, B. R., Wainman, D. E., Tomlinson, L. N., Kay, T. R. and Peacock, B. N. (1999). "Natural Fires in Large Scale Compartments", Int. J. Eng. Performance-Based Fire Codes, 1(2), 43-58.
- Law, A. and Bisby, L. (2020). "The rise and rise of fire resistance", Fire Saf. J., 116, 103188. https://doi.org/10.1016/j.firesaf.2020.103188
- Law, A., Stern-Gottfried, J., Gillie, M. and Rein, G. (2011). "The influence of travelling fires on a concrete frame", Eng. Struct., 33(5), 1635-1642. https://doi.org/10.1016/j.engstruct.2011.01.034
- Law, M. (1971). A relationship between fire grading and building design and contents - FRS No. 877, Fire Res. Note.
- Law, M. (1983). "Basis for the Design of Fire Protection of Building Structures", Struct. Eng., 61 A(1), 25-33.
- Law, M. and O'Brien, T. (1989). Fire safety of bare external structural steel. The Steel Construction Institute.
- Lennon, T. (1998). "Large Compartment Fire Tests on a Full-Scale Eight Storey Building", in ASTM Spec. Tech. Publ. 1336, 55-70.
- Lennon, T. and Moore, D. (2003). "The natural fire safety concept - Full-scale tests at Cardington", Fire Saf. J., 38(7), 623-643. https://doi.org/10.1016/S0379-7112(03)00028-6
- Majdalani, A. H., Cadena, J. E., Cowlard, A., Munoz, F. and Torero, J. L. (2016). "Experimental characterisation of two fully-developed enclosure fire regimes", Fire Saf. J., 79, 10-19. https://doi.org/10.1016/j.firesaf.2015.11.001
- Maluk, C., Linnan, B., Wong, A., Hidalgo, J. P., Torero, J. L., Abecassis-Empis, C. and Cowlard, A. (2017). "Energy distribution analysis in full-scale open floor plan enclosure fires", Fire Saf. J., 91, 422-431. https://doi.org/10.1016/j.firesaf.2017.04.004
- Masson, L. (2003). The Use of an Instrumented Steel Billet to Measure Incident Heat Flux. MSc Thesis. University of Ulster.
- McCaffrey, B. J., Quintiere, J. G. and Harkleroad, M. F. (1981). "Estimating room temperatures and the likelihood of flashover using fire test data correlations", Fire Technol., 17(2), 98-119. https://doi.org/10.1007/BF02479583
- Nadjai, A., Alam, N., Charlier, M., Vassart, O., Dai, X., Franssen, J. and Sj. (2020). "Travelling fire in full scale experimental building subjected to open ventilation conditions", in Proc. 11th Int. Conf. Struct. Fire. Brisbane: The University of Queensland, 439-450.
- Pchelintsev, A., Hasemi, Y., Wakarnatsu, T. and Yokobayashi, Y. (1997). "Experimental And Numerical Study On The Behaviour Of A Steel Beam Under Ceiling Exposed To A Localized Fire", Fire Saf. Sci., 5(m), 1153-1164. https://doi.org/10.3801/IAFSS.FSS.5-1153
- PIT Project: Behaviour of steel framed structures under fire conditions. Main Report. (2000).
- Prahl, J. and Emmons, H. W. (1975). "Fire induced flow through an opening", Combust. Flame, 25(C), 369-385. https://doi.org/10.1016/0010-2180(75)90109-1
- Rackauskaite, E., Hamel, C., Law, A. and Rein, G. (2015). "Improved Formulation of Travelling Fires and Application to Concrete and Steel Structures", Structures, 3, 250-260. https://doi.org/10.1016/j.istruc.2015.06.001
- Rackauskaite, E., Kotsovinos, P., Jeffers, A. and Rein, G. (2017). "Structural analysis of multi-storey steel frames exposed to travelling fires and traditional design fires", Eng. Struct., 150, 271-287. https://doi.org/10.1016/j.engstruct.2017.06.055
- Rein, G., Zhang, X., Williams, P., Hume, B., Heise, A., Jowsey, A., Lane, B. and Torero, J. L. (2007). "Multi-Storey Fire Analysis for High-Rise Buildings", in 11th Interflam, 605-616.
- Rush, D., Dai, X. and Lange, D. (2020). "Tisova Fire Test - fire behaviours and lessons learnt", Fire Saf. J., 103261.
- Sanad, A. M., Lamont, S., Usmani, A. S. and Rotter, J. M. (2000). "Structural behaviour in fire compartment under different heating regimes - Part 1 (slab thermal gradients)", Fire Saf. J., 35(2), 99-116. https://doi.org/10.1016/S0379-7112(00)00024-2
- Sanad, A. M., Lamont, S., Usmani, A. S. and Rotter, J. M. (2000). "Structural behaviour in fire compartment under different heating regimes - part 2: (slab mean temperatures)", Fire Saf. J., 35(2), 117-130. https://doi.org/10.1016/S0379-7112(00)00025-4
- SFPE Engineering Standard on Calculating Fire Exposures to Structures. (2011). Society of Fire Protection Engineers.
- Shorter, G. W. (1959). St. Lawrence Burns: general report. Ottowa
- Sjostrom, J., Hallberg, E., Kahl, F., Temple, A., Welch, S., Dai, X., Gupta, V., Lange, D. and Hidalgo, J. (2019). Characterization of TRAvelling FIRes in large compartments.
- Stern-Gottfried, J. and Rein, G. (2012). "Travelling fires for structural design-Part I: Literature review", Fire Saf. J., 54, 74-85. https://doi.org/10.1016/j.firesaf.2012.06.003
- Stern-Gottfried, J. and Rein, G. (2012). "Travelling fires for structural design-Part II: Design methodology", Fire Saf. J., 54, 96-112. https://doi.org/10.1016/j.firesaf.2012.06.011
- Stern-Gottfried, J., Rein, G., Bisby, L. A. and Torero, J. L. (2010). "Experimental review of the homogeneous temperature assumption in post-flashover compartment fires", Fire Saf. J., 45(4), 249-261. https://doi.org/10.1016/j.firesaf.2010.03.007
- The SFPE Task Group on Fire Exposures to Structural Elements. (2004). SFPE Engineering Guide on Fire Exposures to Structural Elements.
- Thomas, I., Moinuddin, K. and Bennetts, I. (2005). "Fire development in a deep enclosure", in Proc. 8th Int. Symp. Fire Saf. Sci., 1277-1288.
- Thomas, P. H. (1973). "Behavior of fires in enclosures-Some recent progress", Symp. Combust., 14(1), 1007-1020. https://doi.org/10.1016/S0082-0784(73)80091-8
- Thomas, P. H., Heselden, A. J. and Law, M. (1967). Fully-developed Compartment Fires: Two Kinds of Behaviour, Fire Res. Tech. Pap. No. 18. H.M. Stationery Office.
- Thomas, P. H. and Heselden, A. J. M. (1962). "Behaviour of fully developed fire in an enclosure", Combust. Flame, 6(C), 133-135. https://doi.org/10.1016/0010-2180(62)90081-0
- Thomas, P. H. and Heselden, A. J. M. (1972). Fully Developed Fires in Single Compartments.
- Torero, J. L. (2013). "Scaling-Up fire", Proc. Combust. Inst., 34(1), 99-124. https://doi.org/10.1016/j.proci.2012.09.007
- Torero, J. L. (2016). "Flaming Ignition of Solid Fuels", in SFPE Handb. Fire Prot. Eng. New York: Springer, New York, NY, 633-661.
- Torero, J. L., Law, A. and Maluk, C. (2017). "Defining the thermal boundary condition for protective structures in fire", Eng. Struct., 149, 104-112. https://doi.org/10.1016/j.engstruct.2016.11.015
- Torero, J. L., Majdalani, A. H., Abecassis-Empis, C. and Cowlard, A. (2014). "Revisiting the compartment fire", in Proc. 11th Int. Symp. Fire Saf. Sci., 28-45.
- Usmani, A. S., Rotter, J. M., Lamont, S., Sanad, A. M. and Gillie, M. (2001). "Fundamental principles of structural behaviour under thermal effects", Fire Saf. J., 36(8), 721-744. https://doi.org/10.1016/S0379-7112(01)00037-6
- Wakamatsu, T., Hasemi, Y., Kagiya, K. and Kamikawa, D. (2003). "Heating mechanism of unprotected steel beam installed beneath ceiling and exposed to a localized fire: Verification using the real-scale experiment and effects of the smoke layer", Fire Saf. Sci., 1099-1110. https://doi.org/10.3801/IAFSS.FSS.7-1099
- Welch, S., Jowsey, A., Deeny, S., Morgan, R. and Torero, J. L. (2007). "BRE large compartment fire tests-Characterising post-flashover fires for model validation", Fire Saf. J., 42(8), 548-567. https://doi.org/10.1016/j.firesaf.2007.04.002