DOI QR코드

DOI QR Code

Corrosion behaviors of 18Cr Stainless Steels in Selective Catalytic Reduction Environments

Selective Catalytic Reduction (SCR) 환경에서 18% 크롬 스테인리스강의 부식 거동

  • Heesan Kim (Dept. of Nanomaterials Eng., Hongik University)
  • 김희산 (홍익대학교 나노신소재학과)
  • Received : 2023.02.11
  • Accepted : 2023.04.19
  • Published : 2023.06.30

Abstract

Effects of high-temperature environment and low-temperature environment on corrosion behaviours of 18Cr stainless steels (type 304L, type 441) in simulated selective catalytic reduction (SCR) environments were studied using weight loss test in each environment and rust analysis. With time to exposure to the high-temperature environment, type 441 was more resistant to corrosion than type 304L due to both higher diffusivity of Cr and lower thermal expansion coefficient in α-iron. The former provides a stable protective Cr2O3 layer. The latter leaded to low residual stress between scale and steel, reducing the spallation of the scale. With time to exposure to the low-temperature environment, on the other hand, type 304L was more resistant to corrosion than type 441. The lower resistance of type 441 was caused by Cr-depleted zone with less than 11% formed during the pre-exposure to a high-temperature environment, unlike type 304L. It was confirmed by results from the crevice corrosion test of sensitised 11Cr steel. Hence, to achieve higher corrosion resistance in simulated SCR environments, ferritic stainless steels having lower thermal expansion coefficient and higher diffusivity of Cr but containing more than 18% Cr are recommended.

Keywords

Acknowledgement

본 연구는 포스코의 지원 하에 이루어졌으며 이에 감사를 드립니다.

References

  1. S. Saedlou, P. Santacreu, and J. Leseux, SAE 2011 world congress, SAE technical paper No. 2011-01-1323, SAE international, Detroit, MI (2011).
  2. C. Miraval, S. Saedlou, R. Evrard, P.-O. Santacreu, and J. Leseux, Influence of Selective Catalytic Reduction (SCR) system on stainless steel durability, Rem: Revista Escola de Minas, 66, 153 (2013). Doi: https://doi.org/10.1590/S0370-44672013000200003
  3. H. Asteman, J.-E. Svensson, M. Norell, and L.-G. Johansson, Influence of Water Vapor and Flow Rate on the High-Temperature Oxidation of 304L; Effect of Chromium Oxide Hydroxide Evaporation, Oxidation of Metals, 54, 11 (2000). Doi: https://doi.org/10.1023/A:1004642310974
  4. K. Segerdahl, J.-E. Svensson, L.-G. Johansson, Protective and Nonprotective Behavior of 11% Cr Steel inO2+H2OEnvironment at 450-700℃, Journal of The Electrochemical Society, 151, B394 (2004). Doi: https://doi.org/10.1149/1.1753584
  5. H. Asteman, J.-E. Svensson, M. Norell, and L.-G. Johansson, Indication of Chromium Oxide Hydroxide Evaporation During Oxidation of 304L at 873 K in the Presence of 10% Water Vapor, Oxidation of Metals, 52, 95 (1999). Doi: https://doi.org/10.1023/A:1018875024306
  6. A. J. Jardnas, J.-E. Svensson, and L.-G. Johansson, Influence of SO2 on the Oxidation of 304L Steel in O2 + 40%H2O at 600 ℃, Oxidation of Metals, 69, 249 (2008). Doi: https://doi.org/10.1007/s11085-008-9096-z
  7. X. G. Zheng and D. J. Young, Sulphide formation after pre-oxidation of chromia formers, Corrosion Science, 38, 1877 (1996). Doi: https://doi.org/10.1016/S0010-938X(96)00069-8
  8. J. Nockert, L. Nyborg and M. Norell, Microstructural evaluation of the galvanic corrosion of nickel and high-chromium iron alloys in turbocharger application, Materials and Corrosion, 63, 388 (2012).
  9. AK steel, 439 High Performance-10TM / 439 Ultra Form® Stainless Steel, https://www.aksteel.com/ourproducts/stainless/ferritic-stainless-steels (2015).
  10. ASTM G48-11, Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution (2011).
  11. K. Tjokro, D. J. Young, R. E. Johansson, and B. G. Ivarsson, High temperature sulfidation -oxidation of stanless steels, Journal de Physique IV, 3, C9-357 (1993). Doi: https://doi.org/10.1051/jp4:1993936
  12. B. Pujilaksono, T. Jonsson, H. Heidari, M. Halvarsson, J.-E. Svensson, and L.-G. Johansson, Oxidation of binary FeCr alloys (Fe-2.25Cr, Fe-10Cr, Fe-18Cr and Fe-25Cr) in O2 and in O2 + H2O environment at 600 ℃, Oxidation of Metals, 75, 183 (2011). Doi: https://doi.org/10.1007/s11085-010-9229-z
  13. T. Jonsson, S. Karlsson, H. Hooshyar1, M. Sattari, J. Liske, J.-E. Svensson, and L.-G. Johansson, Oxidation After Breakdown of the Chromium-Rich Scale on Stainless Steels at High Temperature: Internal Oxidation, Oxidation of Metals, 85, 509 (2016). Doi: https://doi.org/10.1007/s11085-016-9610-7
  14. H. Kim, CORROSION 2002, No 02208, NACE International, Denver, CO (2002).
  15. S. Azuma, T. kudo, H. Miyuki, M. Yamashita, and H. Uchida, Effect of nickel alloying on crevice corrosion resistance of stainless steels, Corrosion Science, 46, 2265 (2004). Doi: https://doi.org/10.1016/j.corsci.2004.01.003
  16. H.-S. Heo1 and S.-J. Kim, Electrochemical Corrosion Damage Characteristics of Austenite Stainless Steel and Nickel Alloy with Various Seawater Concentrations, Corrosion Science and Technology, 20, 281 (2021). Doi: https://doi.org/10.14773/cst.2021.20.5.281
  17. M. Halvarsson, J. E. Tang, H. Asteman, J.-E. Svensson, and L.-G. Johansson, Microstructural investigation of the breakdown of the protective oxide scale on a 304 steel in the presence of oxygen and water vapour at 600 ℃, Corrosion Science, 48, 2014 (2006). Doi: https://doi.org/10.1016/j.corsci.2005.08.012
  18. J. Topfer, S. Aggarwal and R. Dieckmann, Point defects and cation tracer diffusion in (CrxFe1-x)3O4 spinels, Solid State Ionics, 81, 251 (1995). Doi: https://doi.org/10.1016/0167-2738(95)00190-H
  19. M. Takeda, T. Onishi1, S. Nakakubo, and S. Fujimoto, Physical Properties of Iron-Oxide Scales on Si-Containing Steels at High Temperature, Materials Transactions, 50, 2242 (2009). Doi: https://doi.org/10.2320/matertrans.M2009097
  20. R. F. Tylecote, Marker movements in the oxidation of iron and some other metals, Journal of The Iron and Steel Institute, 196, 135 (1960).
  21. J. Robertson, M. I. Manning, Limits to adherence of oxide scales, Materials Science And Technology, 6, 81 (1990). Doi: https://doi.org/10.1179/mst.1990.6.1.81
  22. M. Rouby and P. Blanchard, Stainless steel, p. 139, P. Lacombe, B. Baroux, and G. Beranger, Les Editions de Physique, Les Ulis, France (1993).
  23. E. Folkhard, G. Rabensteiner, E. Pertender, H. Schabereiter, and J. Tosch, Welding Metallurgy of Stainless Steels, p. 50, Springer-Verlag, Wien, NY (1984).
  24. J. Takada and M. Adachi, Determination of diffusion coefficient of oxygen in α-iron from internal oxidation measurements in Fe-Si alloys, Journal of Materials Science, 21, 2133 (1986). Doi: https://doi.org/10.1007/BF00547959
  25. J. Takada, S. Yamamoto, S. Kikuchi, and M. Adachi, Determination of diffusion coefficient of oxygen in γ-iron from measurements of internal oxidation in Fe-Al alloys, Metallurgicsl Transactions A, 17, 221 (1986). Doi: https://doi.org/10.1007/BF02643898