• Title/Summary/Keyword: Thermal Emission

Search Result 1,370, Processing Time 0.031 seconds

Tb3+ and Ce3+ Intercalated Laponite Powder: The Influence of Ce3+ Ions on Thermal Stability and Optical Properties of Tb3+ Intercalated Laponite

  • Lee, Han-Na;Kim, You-Hyuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1273-1276
    • /
    • 2011
  • Laponite samples intercalated with $Tb^{3+}$ or $Tb^{3+},Ce^{3+}$ ions were prepared by exchange of Na+ ions in interlayers with $Tb^{3+}$ or $Ce^{3+}$ ions. Strong green and weak blue emissions under vacuum ultraviolet (VUV) excitation (${\lambda}$ = 158 nm) were observed due to the $^5D_4{\rightarrow}^7F_J$ and $^5D_3{\rightarrow}^7F_J$ emission lines, respectively. $Tb^{3+}$ ions in an interlayer of laponite mainly existed in ion pairs or clusters, as evidenced by the concentration-dependent luminescence of the $Tb^{3+}$ ions on the relative intensities of the $^5D_3{\rightarrow}^7F_J$ and the $^5D_4{\rightarrow}^7F_J$ emission lines, due to the action of a cross-relaxation process. The addition of $Ce^{3+}$ ions increased the thermal stability of $Tb^{3+}$ intercalated laponite up to $650^{\circ}C$ and quenched the $^5D_3{\rightarrow}^7F_J$ emission lines, probably by promoting the formation of $Tb^{3+}$ ion pairs at relatively low $Tb^{3+}$ concentrations.

A Study on Indoor Thermal Environment in an Tower Type Apartment House at Tropical Nights (여름철 열대야 발생시 탑상형 아파트의 실내온열환경에 대한 연구)

  • Chang, Hyun-Jae;Kim, Hyung-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.1
    • /
    • pp.20-25
    • /
    • 2010
  • In this study, As a basic research for improving indoor thermal environment at tower type apartment houses, specifications of heat storage and heat emission in the structures of apartment houses were investigated, and the ratio of indoor and outdoor air velocity at tower type apartment house was examined, too. Indoor temperature at night time was higher than outdoor air temperature because heat emission from the structure of wall, ceiling and floor those are constructed by use of reinforced concrete which has large heat capacity. The ratio of indoor and outdoor air velocity was lower than 0.1 and this was caused by the plan of tower type apartment house. PMV was in the range of 0.3~1.9, and was about 1.0 (it means slightly warm) at 10 : 00 p.m.. To improve indoor thermal environment in summer season at tower type apartment houses, it needs more investigation on specifications of heat storage and heat emission in the structure including winter season, and on the improvement of the ratio of indoor and outdoor air velocity.

Effect of $NH_3$ on the Synthesis of Carbon Nanotubes Using Thermal Chemical Vapor Deposition

  • Cho, Hyun-Jin;Jang, In-Goo;Yoon, So-Jung;Hong, Jin-Pyo;Lee, Nae-Sung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1219-1224
    • /
    • 2006
  • This study investigates the effect of $NH_3$ gas upon the growth of carbon nanotubes (CNTs) using thermal chemical vapor deposition. It is considered that the CNT synthesis occurs mainly through two steps, clustering of catalyst particles and subsequent growth of CNTs. We thus introduced $NH_3$ during either an annealing or growth step. When $NH_3$ was fed only during annealing, CNTs grew longer and more highly crystalline with diameters unchanged. An addition of $NH_3$ during growth, however, resulted in shorter CNTs with lower crystallinity while increased their diameters. Vertically aligned, highly populated CNT samples showed poor field emission characteristics, leading us to apply post-treatments onto the CNT surface. The CNTs were treated by adhesive tapes or etched back by dc plasma of $N_2$ to reduce the population density and the radius of curvatures of CNTs. We discuss the morphological changes of CNTs and their field emission properties upon surface treatments.

  • PDF

Combustion Characteristics of Cylindrical Premixed Burner using Different Baffle Plate and Flame Holes (분포판 및 염공변화에 따른 원통형 예혼합 버너의 연소 특성)

  • Lee, Pil Hyong;Hwang, Sang Soon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.7
    • /
    • pp.350-359
    • /
    • 2017
  • Premixed burner is a very strong candidate in household condensing gas boiler burner system because it has low CO and NOx emission with high thermal efficiency. The objective of this study was to determine combustion characteristics of cylindrical premixed burner using different baffle plate and flame holes. Results showed that cylindrical premixed flame mode could be changed into lift-off flame, blue flame, red flame, and green flame with increasing equivalence ratio. In particular, blue flame was found to be very stable at heating load of 8,82~35,280 kcal/h. NOx emission was under 26 ppm between 0.775 to 0.813 of equivalence ratio. CO emission was under 58 ppm under the same equivalence ratio. Thermal efficiency, a very important index in condensing gas boiler, was found to be above 90.13% under the same equivalence region.

ZnO Micro/Nanocrystals Synthesized by Thermal Evaporation Method using Mn Powder as the Reducing Agent (Mn 분말을 환원제로 사용하여 열증발법에 의해 생성된 ZnO 마이크로/나노결정)

  • So, Ho-Jin;Lee, Geun-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.432-436
    • /
    • 2019
  • Zinc oxide(ZnO) micro/nanocrystals are grown via thermal evaporation of ZnO powder mixed with Mn powder, which is used as a reducing agent. The ZnO/Mn powder mixture produces ZnO micro/nanocrystals with diverse morphologies such as rods, wires, belts, and spherical shapes. Rod-shaped ZnO micro/nanocrystals, which have an average diameter of 360 nm and an average length of about $12{\mu}m$, are fabricated at a temperature as low as $800^{\circ}C$ due to the reducibility of Mn. Wire-and belt-like ZnO micro/nanocrystals with length of $3{\mu}m$ are formed at $900^{\circ}C$ and $1,000^{\circ}C$. When the growth temperature is $1,100^{\circ}C$, spherical shaped ZnO crystals having a diameter of 150 nm are synthesized. X-ray diffraction patterns reveal that ZnO had hexagonal wurtzite crystal structure. A strong ultraviolet emission peak and a weak visible emission band are observed in the cathodoluminescence spectra of the rod- and wire-shaped ZnO crystals, while visible emission is detected for the spherical shaped ZnO crystals.

Thermal Distribution Analysis in Nano Cell OLED (나노 셀 OLED의 열 분포 해석)

  • Kyung-Uk Jang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.309-313
    • /
    • 2024
  • The key to determining the lifetime of OLED device is how much brightness can be maintained. It can be said that there are internal and external causes for the degradation of OLED devices. The most important cause of internal degradation is bonding and degradation in the excited state due to the electrochemical instability of organic materials. The structure of OLED modeled in this paper consists of a cathode layer, electron injection layer (EIL), electron transport layer (ETL), light emission layer, hole transport layer (HTL), hole injection layer (HIL), and anode layer on a glass substrate from top to bottom. It was confirmed that the temperature generated in OLED was distributed around the maximum of 343.15 K centered on the emission layer. It can be seen that the heat distribution generated in the presented OLED structure has an asymmetrically high temperature distribution toward the cathode, which is believed to be because the sizes of the cathode and positive electrode are asymmetric. Therefore, when designing OLED, it is believed that designing the structures of the cathode and anode electrodes as symmetrically as possible can ensure uniform heat distribution, maintain uniform luminance of OLED, and extend the lifetime. The thermal distribution of OLED was analyzed using the finite element method according to Comsol 5.2.

Semiconductor Nanowires;Their Emission Stability and Energy Distribution

  • Yu, Se-Gi;Yi, Whi-Kun;Lee, Sang-Hyun;Heo, Jung-Na;Jeong, Tae-Won;Lee, Jeong-Hee;Lee, Soo-Chang;Kim, J.M.;Lee, Cheol-Jin;Lyu, Seung-Chul;Han, Jae-Hee;Yoo, Ji-Beom
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.1028-1031
    • /
    • 2002
  • Ga-based semiconductor nanowires (GaN, GaP) were synthesized by the reaction of Ga metal and GaN/GaP powder with a $NH_3/Ar$ gas using thermal chemical vapor deposition. The field emission and emission stability under oxygen and argon environments were investigated. Field emission energy distributions of electrons from these nanowires revealed that field emission mechanism of the semiconductor nanowires were different from carbon nanotubes.

  • PDF

Electrical and Optical Properties of Red Phosphorescent Top Emission OLEDs with Transparent Metal Cathodes (투명 금속 음극을 이용한 전면발광 적색 인광 OLEDs의 전기 및 광학적 특성)

  • Kim, So-Youn;Ha, Mi-Young;Moon, Dae-Gyu;Lee, Chan-Jae;Han, Jeong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.802-807
    • /
    • 2007
  • We have developed red phosphorescent top emission organic light-emitting diodes with transparent metal cathodes deposited by using thermal evaporation technique. Phosphorescent guest molecule, BtpIr(acac), was doped in host CBP for the red phosphorescent emission, Ca/Ag, Ba/Ag, and Mg/Ag double layers were used as cathode materials of top emission devices, which were composed of glass/Ni/2TNATA(15 nm)/${\alpha}$-NPD(35 nm)/CBP:BtpIr(acac)(40 nm, 10%)/BCP(5 nm)/$Alq_3$(5 nm)/cathodes. The optical transparencies of these metal cathodes strongly depend on underlying Ca, Ba, and Mg layers. These layers also strongly affect the electrical conduction and emission properties of the red phosphorescent top emission devices.

A Study on the Estimation of Exhaust Emission by Nonroad Construction Equipments (비도로용 건설기계의 오염물질 배출량 산정에 관한 연구)

  • 정일록;엄명도;류정호;임철수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.3
    • /
    • pp.317-325
    • /
    • 1999
  • The demand of diesel engine on the construction equipment has been rapidly increased because of high thermal efficiency and fuel economy. The exhaust emission from nonroad vehicles equipped with diesel engine such as construction equipment, ship, and agricultural equipment, etc. Which are known to be harmful to human health and environment, has not been regulated in our country. But the regulation for nonroad vehicle has been already progressed in advanced country. So we investigated the contribution ratio of air pollution by construction equipment in order to establish the exhaust emission management strategy for nonroad vehicle. Based on the statistical data for construction equipment, 5 kinds of equipment are selected and tested in the engine dynamometer to determine the emission factor. And the amount of air pollutant from construction equipment are calculated by using of the emission factor and recommended exhaust emission standard for construction equipment.

  • PDF

Effect of Thermal Poling on the 1.55 μm Emission Characteristics of Er3+-doped Glasses (Er3+ 첨가 유리의 1.55μm 형광특성에 미치는 Thermal Poling의 영향)

  • Lee, Tae-Hoon;Chung, Woon-Jin;Heo, Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.423-427
    • /
    • 2003
  • Effect of the thermal poling on the 1.55 fm emission spectra in various Er$^{3+}$ -doped glasses was investigated with a special attention on the changes in the values of FWHM(Full Width at Half Maximum) intensity. Tellurite glasses poled at 28$0^{\circ}C$ with an electric voltage of 4 kV resulted in an approximately 6% increase in FWHM values compared with their unpoled counterparts. On the other hand, values for glasses, such as aluminosilicate, sulfide and chalcohalide, either decreased or remained unchanged. The characteristic results from tellurite glasses are most probably due to the presence of lone-pair electrons in the TeO$_4$ hi-pyramidal units that form the main network structure of tellurite glasses.