DOI QR코드

DOI QR Code

ZnO Micro/Nanocrystals Synthesized by Thermal Evaporation Method using Mn Powder as the Reducing Agent

Mn 분말을 환원제로 사용하여 열증발법에 의해 생성된 ZnO 마이크로/나노결정

  • So, Ho-Jin (Department of Advanced Materials Engineering, Graduate School, Dong-eui University) ;
  • Lee, Geun-Hyoung (Department of Advanced Materials Engineering, Graduate School, Dong-eui University)
  • 소호진 (동의대학교 대학원 신소재공학과) ;
  • 이근형 (동의대학교 대학원 신소재공학과)
  • Received : 2019.05.20
  • Accepted : 2019.06.28
  • Published : 2019.07.27

Abstract

Zinc oxide(ZnO) micro/nanocrystals are grown via thermal evaporation of ZnO powder mixed with Mn powder, which is used as a reducing agent. The ZnO/Mn powder mixture produces ZnO micro/nanocrystals with diverse morphologies such as rods, wires, belts, and spherical shapes. Rod-shaped ZnO micro/nanocrystals, which have an average diameter of 360 nm and an average length of about $12{\mu}m$, are fabricated at a temperature as low as $800^{\circ}C$ due to the reducibility of Mn. Wire-and belt-like ZnO micro/nanocrystals with length of $3{\mu}m$ are formed at $900^{\circ}C$ and $1,000^{\circ}C$. When the growth temperature is $1,100^{\circ}C$, spherical shaped ZnO crystals having a diameter of 150 nm are synthesized. X-ray diffraction patterns reveal that ZnO had hexagonal wurtzite crystal structure. A strong ultraviolet emission peak and a weak visible emission band are observed in the cathodoluminescence spectra of the rod- and wire-shaped ZnO crystals, while visible emission is detected for the spherical shaped ZnO crystals.

Keywords

References

  1. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H.-J. Choi, Adv. Funct. Mater., 12, 323 (2002). https://doi.org/10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
  2. A. Cheng, Y. Tzeng, Y. Zhou, M. Park, T. Wu, C. Shannon, D. Wang and W. Lee, Appl. Phys. Lett., 92, 092113 (2008). https://doi.org/10.1063/1.2889502
  3. J. L. Yang, S. J. An, W. I. Park, G.-C. Yi and W. Choi, Adv. Mater., 16, 1661 (2004). https://doi.org/10.1002/adma.200306673
  4. J. S. Na, B. Gong, G. Scarel and G.N. Parsons, ACS Nano, 3, 3191 (2009). https://doi.org/10.1021/nn900702e
  5. J. Lee, A.J. Easteal, U. Pal and D. Bhattacharyya, Curr. Appl. Phys., 9, 792 (2009). https://doi.org/10.1016/j.cap.2008.07.018
  6. B. N. Illy, B. Ingham and M. P. Ryan, Cryst. Growth Des., 10, 1189 (2010). https://doi.org/10.1021/cg901156z
  7. D. Calestani, M. Z. Zha, L. Zanotti, M. Villani and A. Zappettini, Cryst. Eng. Comm., 13, 1707 (2011). https://doi.org/10.1039/C0CE00670J
  8. A. Johari, V. Rana and M. C. Bhatnagar, Nanomater. Nanotechnol., 1, 49 (2011).
  9. C. X. Xu, X. W. Sun, Z. L. Dong and M. B. Yu, Appl. Phys. Lett., 85, 3878 (2004). https://doi.org/10.1063/1.1811380
  10. B. D. Yao, Y. F. Chan and N. Wang, Appl. Phys. Lett., 81, 757 (2002). https://doi.org/10.1063/1.1495878
  11. M. Biswas, E. McGlynn, M. O. Henry, M. McCann and A. Rafferty, J. Appl. Phys., 105, 094306 (2009). https://doi.org/10.1063/1.3121213
  12. H. Lv, D. D. Sang, H. D. Li, X. B. Du, D. M. Li and G. T. Zou, Nanoscale Res. Lett., 5, 620 (2010). https://doi.org/10.1007/s11671-010-9524-2
  13. Y. Zhang, M. K. Ram, E. K. Stefanakos and D. Y. Goswami, J. Nanomater., 2012, 624520 (2012).
  14. D. S. Kim, U. Gosele and M. Zacharias, J. Cryst. Growth, 311, 3216 (2009). https://doi.org/10.1016/j.jcrysgro.2009.03.026
  15. U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morloc, J. Appl. Phys., 98, 041301 (2005). https://doi.org/10.1063/1.1992666
  16. D. F. Wang and T. J. Zhang, Solid State Commun., 149, 1947 (2009). https://doi.org/10.1016/j.ssc.2009.07.038
  17. A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui and C. Surya, Adv. Funct. Mater., 14, 856 (2004). https://doi.org/10.1002/adfm.200305082
  18. X. L. Wu, G. G. Siu, C. L. Fu and H. C. Ong, Appl. Phys. Lett., 78, 2285 (2001). https://doi.org/10.1063/1.1361288