• Title/Summary/Keyword: Thermal Coating

Search Result 1,180, Processing Time 0.027 seconds

High functional surface treatments for rapid heating of plastic injection mold (급속가열용 플라스틱 사출금형을 위한 고기능성 표면처리)

  • Park, Hyun-Jun;Cho, Kyun-Taek;Moon, Kyoung-Il;Kim, Tae-Bum;Kim, Sang-Sub
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.7-12
    • /
    • 2021
  • Plastic injection molds used for rapid heating and cooling must minimize surface damage due to friction and maintain excellent thermal and low electrical conductivity. Accordingly, various surface treatments are being applied. The properties of Al2O3 coating and DLC coating were compared to find the optimal surface treatment method. Al2O3 coating was deposited by thermal spray method. DLC films were deposited by sputtering process in room temperature and high temperature PECVD (Plasma enhanced chemical vapor deposition) process in 723 K temperature. For the evaluation of physical properties, the electrical and thermal conductivity including surface hardness, adhesion and wear resistance were analyzed. The electrical resistance of the all coated samples was showed insulation properties of 24 MΩ/sq or more. Especially, the friction coefficient of high temp. DLC coating was the lowest at 0.134.

세라믹 溶射皮膜의 强度向上에 관한 硏究

  • 김영식;배차헌;김영식
    • Journal of Welding and Joining
    • /
    • v.9 no.3
    • /
    • pp.18-25
    • /
    • 1991
  • The purpose of this paper was to investigate the effect of deposition configuration on the mechanical properties of the flame sprayed titania ceramic coating. The sprayed deposition configuration was made in different five types with titania ceramic and Ni-base alloy on the mild steel substrate. The composite coating exhibited superior mechanical properties such as hardness, adhesive strength, thermal shock resistance and corrosion resistance, whereas the mixed coating proved to be more resistant to erosion. Especially graded coating, which consist of Ni-base alloy undercost, intermediate grade coat and titania ceramic overcost, showed excellent mechanical properties.

  • PDF

Effects of Composition, Structure Design, and Coating Thickness of Thermal Barrier Coatings on Thermal Barrier Performance

  • Jung, Sung-Hoon;Jeon, Soo-Hyeok;Lee, Je-Hyun;Jung, Yeon-Gil;Kim, In-Soo;Choi, Baig-Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.689-699
    • /
    • 2016
  • The effects of composition, structure design, and coating thickness of thermal barrier coating (TBC) on thermal barrier performance were investigated by measuring the temperature differences of TBC samples. TBCs with the thin and thick top coats were used for these studies, including TBCs with rare-earth (Gd, Yb, and La) compositions. The thermal barrier performance was enhanced with increasing the thickness of top coat even for thin TBCs, indicating that the thermal barrier performance was commensurate to the thickness of top coat. On the other hand, the bi-layered TBC, which was prepared with Yb-Gd-YSZ feedstock powder, with the buffer layer of high purity 8YSZ showed a better thermal barrier performance than that of regular purity 8YSZ. The interfaces in the bi-layered TBCs had a decisive effect on the thermal barrier performance, showing the performance enhanced with increasing numbers of interfaces. However, a new structural design and an additional process should be considered to reduce stress concentrations and to ensure interface stability, respectively, for improving thermal durability in the multi-layered TBCs.

Development of Zn-Al thermal diffusion coating technology for improving anti-corrosion of various metal products (다양한 금속 부품의 내식성 향상을 위한 Zn-Al 열 확산 코팅 기술 개발)

  • Lee, Joo-Young;Lee, Joo-Hyung;Hwang, Joon;Lee, Yong-Kyu
    • Corrosion Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.195-203
    • /
    • 2014
  • Modern industry has a wide variety of application areas such as ocean industry, construction and automobile industry. With the current circumstances, the need for anti-corrosion technology that can be used on materials to withstand in harsh environments, is increasing. In this study, we have sought to develop a metal coating technology with zinc and aluminum powders as a potential anti-corrosion material. To make a coating on metal products, a thermal diffusion coating method was used under the conditions of $350^{\circ}C$ for 30 minutes. Optical microscope, Field emission scanning electron microscope (FE-SEM&EDX) and X-ray diffraction analysis were used to analyze a coating layer. As a result, we have confirmed that the generated amount of rust on metal parts coated with thermal diffusion coating method decreased dramatically compared with non-coated metal parts. Furthermore, the anti-corrosion performance was evaluated according to the different ratio of zinc and aluminum. Finally, we confirmed the possibility of application and commercialization of our coating technique on metal parts used in harsh industrial based on the results of these performance.

Electrochemical Characteristics in Sea Water of Al-3%Mg Arc Spray Coating Layer for Corrosion Protection with Sealing Treatment (후처리 적용에 따른 방식용 Al-3%Mg 용사코팅 층의 해수 내 전기화학적 특성)

  • Park, Il-Cho;Kim, Seong-Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.974-980
    • /
    • 2015
  • Arc thermal spray coating using Al-3%Mg thermal spray wire was carried out to prevent steel from corrosion damage under the marine environment. Post-sealing was applied to Al-3%Mg spray coating treatment using organic/inorganic composite ceramics in order to improve the corrosion resistance of the as-sprayed coating. The results of various electrochemical experiments with sealing treatment indicated that the improvement in corrosion resistance was observed due to low current density in all applied potential range during anodic and cathodic polarization experiments. Futhermore, the natural potential measurement exhibited severe potential fluctuation due to influence of micro-crack presence on the surface of sealed thermal spray coating layer. In addition, the sealed layer was easily eliminated during anodic polarization. Nevertheless, Al-3%Mg spray coating layer improved corrosion resistance by sealing treatment because the sealed coating efficiency was determined to be 92.11%, indicating the exterior environment barrier effect which is based on the Tafel analysis.

Basic Study on Combustion Characteristics of Coaxial Premixed Burner with the Addition of $Al_2O_3$ Particles (산화 알루미나 입자 첨가에 따른 동축류 예혼합 연소기의 연소 특성 기초연구)

  • Park, Seung-Il;Kim, Go-Tae;Kim, Nam-Il
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.58-65
    • /
    • 2011
  • Thermal spray technology has been used in many industrial application. Especially, thermal spray coating have been employed with the purposes of achieving better resistances in abrasion, heat and corrosion. In the previous studies on the thermal spray coating, thermal spray characteristics from the perspective of combustion engineering have not been investigated sufficiently, while the material characteristics of the coated substrates have been investigated widely. In this study, the effect of spray particles on the flame behavior was experimentally investigated. The amount of the injected particles was measured using the light scattering method and the temperature of the particles was estimated using a two-color method. Various flame-spray interactions were observed and it was found that the high temperature zone near the flame is elongated by particles density. Based on these results, the applicability of the light scattering method and the two-color method was discussed.

Study on thermal performance of vacuum window with various low-ε coating glasses (저방사 코팅이 진공창의 열성능에 미치는 영향)

  • Cho, S.H.;Tae, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.300-311
    • /
    • 1997
  • A theoretical method was developed to analyze the effect of low-$\varepsilon$ coatings which have influence on thermal performance of vacuum windwo glazing and double pane glazing. The overall heat transfer coefficient(U) value and thermal performance were analyzed by theroretical method on various kins of windows. TRNSYS program was used to analyze total heating and cooling energy consumption on the model building which has various windows. As the result, better thermal insulation can be achieved on the vacuum window glazing than double pane glazing when low-$\varepsilon$ coating was done on the surface of glass. Total heating and cooling energy consumption was almost same on the double pane window glazing but was lessened on the vacuum window glazing when the window size of south direction increased. Therefore, low-$\varepsilon$ coating was very necessary for vacuum window glazing in order to improve thermal insulation performance and efficient energy conservation can be achieved by vacuum window glazing at the real building which has large window.

  • PDF

Failure Mechanisms for Zirconia Based Thermal Barrier Coatings

  • Lee, Eui Y.;Kim, Jong H.
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.340-344
    • /
    • 1998
  • Failure mechanisms were investigated for the two layer thermal barrier coatings consisting of NiCrAlY bond coat and $ZrO_2$-8wt.% $Y_2O_3$ ceramic coating during cyclic oxidation. $Al_2O_3$ developed at the ceramic coating/bond coat interface first, followed by the Cr/Ni rich oxides such as $NiCr_2O_4$ and $Ni(Al, Cr)_2O_4$ during cyclic oxidation. It was observed that the spalling of ceramic coatings took place primarily within the NiCrAlY bond coat oxidation products or at the interface between the bond coat oxidation products and zirconia based ceramic coating or the bond coat. It was also observed that the fracture within these oxidation products occurred with the formation of $Ni(Cr, Al)_2O_4$ spinel or Cr/Ni rich oxides. It was therefore concluded that the formation of these oxides was a life-limiting event for the thermal barrier coatings.

  • PDF

Numerical Analysis of Natural Convection inside Spray Coating Room on Temperature Distributions (자연대류를 고려한 스프레이 코팅 룸에서의 온도분포 해석)

  • Kim, Nam Woong;Kim, Bo-Seon;Kim, Kug Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.425-430
    • /
    • 2019
  • Zinc coatings are widely used because of their environmental friendliness and high performance. In general, the coating temperature is a major factor in determining the coating layer thickness and coating quality. In the case of a zinc coating, a uniform and appropriate coating temperature is required. In this study, a thermal flow simulation of the air flow was performed to analyze the temperature distribution of a zinc spray coating room in a natural convection state. Using SolidWorks, modeling was performed for two spray coating rooms, a preheating room, and a drying room, and a thermal flow coupled analysis was performed using ANSYS-FLUENT. As a result of the analysis, the temperature distribution characteristics in the spray coating rooms were determined. It was found that the present temperature was below the target temperature of $25^{\circ}C$. Simulations were conducted for two different boundary conditions (one with a heater added and another with the open part closed). The simulation results show that the method of closing the open part is better than adding the heater.

The Mechanical Properties and Biocompatibility of Functionally Graded Coatings(FGC) of Hydroxyapatite(HA) and Metallic Powders - Functionally Gradient Coatings of Thermal Spray in Air- (Hydroxyapatite (HA)와 금속 분말 경사 코팅의 기계적 특성 및 생체 적합성 - 대기 열용사 경사코팅 -)

  • Kim, Eun-Hye;Kim, Yu-Chan;Han, Seung-hee;Yang, Seok-Jo;Park, Jin-Woo;Seok, Hyun-Kwang
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.13-20
    • /
    • 2009
  • This work presents functionally graded coatings (FGC) of hydroxyapatite (HA) and metallic powders on Ti-6Al-4V implants using plasma spray coating method. HA has been the most frequently used coating material due to its excellent compatibility with human bones. However, because of the abrupt changes in thermomechanical properties between HA and the metallic implant across an interface, and residual stress induced on cooling from coating temperture to room temperature, debonding at the interface occurs in use sometimes. In this work, FGC of HA and Ti or Ti-alloy powders is made to mitigate the abrupt property changes at the interface and the effect of FGC on residual stress release is investigated by evaluating the mechanical bond strength between the implant and the HA coating layers. Thermal annealing is done after coating in order to crystallize the HA coating layer which tends to have amorphous structure during thermal spray coating. The effects of types and compositional ratio of metallic powders in FGC and annealing conditions on the bond strength are also evaluated by strength tests and the microstructure analysis of coating layers and interfaces. Finally, biocompatibility of the coating layers are tested under ISO 10993-5.