The Mechanical Properties and Biocompatibility of Functionally Graded Coatings(FGC) of Hydroxyapatite(HA) and Metallic Powders - Functionally Gradient Coatings of Thermal Spray in Air-

Hydroxyapatite (HA)와 금속 분말 경사 코팅의 기계적 특성 및 생체 적합성 - 대기 열용사 경사코팅 -

  • Kim, Eun-Hye (AMRC, Korea Institute of Science & Technology) ;
  • Kim, Yu-Chan (AMRC, Korea Institute of Science & Technology) ;
  • Han, Seung-hee (AMRC, Korea Institute of Science & Technology) ;
  • Yang, Seok-Jo (Department of Mechatronics Engineering, Chungnam National University) ;
  • Park, Jin-Woo (Department of Materials Science and Engineering, Yonsei University) ;
  • Seok, Hyun-Kwang (AMRC, Korea Institute of Science & Technology)
  • 김은혜 (한국과학기술연구원 기능금속연구센터) ;
  • 김유찬 (한국과학기술연구원 기능금속연구센터) ;
  • 한승희 (한국과학기술연구원 기능금속연구센터) ;
  • 양석조 (충남대학교 메카트로닉스공학과) ;
  • 박진우 (연세대학교 신소재공학과) ;
  • 석현광 (한국과학기술연구원 기능금속연구센터)
  • Received : 2008.10.16
  • Published : 2009.01.28

Abstract

This work presents functionally graded coatings (FGC) of hydroxyapatite (HA) and metallic powders on Ti-6Al-4V implants using plasma spray coating method. HA has been the most frequently used coating material due to its excellent compatibility with human bones. However, because of the abrupt changes in thermomechanical properties between HA and the metallic implant across an interface, and residual stress induced on cooling from coating temperture to room temperature, debonding at the interface occurs in use sometimes. In this work, FGC of HA and Ti or Ti-alloy powders is made to mitigate the abrupt property changes at the interface and the effect of FGC on residual stress release is investigated by evaluating the mechanical bond strength between the implant and the HA coating layers. Thermal annealing is done after coating in order to crystallize the HA coating layer which tends to have amorphous structure during thermal spray coating. The effects of types and compositional ratio of metallic powders in FGC and annealing conditions on the bond strength are also evaluated by strength tests and the microstructure analysis of coating layers and interfaces. Finally, biocompatibility of the coating layers are tested under ISO 10993-5.

Keywords

Acknowledgement

Supported by : KIST

References

  1. S. B. Cho and Y. J. Kim, Ceramist 3, 5 (2006)
  2. O. S. Kwon, G. H. Roo, G. B. Park, M. H. Lee, T. S. Bae and O. Y. Lee, J. Kor. Inst. Met. & Mater. 43, 2 (2005)
  3. Erlin Zhang, Chunming Zou, and Guoning Yu, Mater. Sci. Eng. C, In press (2008)
  4. Ugur Turkan, Orhan Ozturk and Ahmet E. Eroglu, Surface & Coating Technology 200, 5020 (2006) https://doi.org/10.1016/j.surfcoat.2005.05.005
  5. Xuebin Zheng, Minhui Huang, and Chuanxian Ding, Biomaterials 21, 841 (2000) https://doi.org/10.1016/S0142-9612(99)00255-0
  6. E. L. Solla, J. P. Borrajo, P. Gonzalez, J. Serra, S. Chiussi, C. Serra, B. Leon and M. Perez-Amor, Vacuum 82, 1383 (2008) https://doi.org/10.1016/j.vacuum.2008.03.020
  7. C. Renghini, E. Girardin, A.S. Fomin, A. Manescu, A. Sabbioni, S.M. Barinov, V.S. Komlev, G. Albertini and F. Fiori, Mater. Sci. Eng. B (In press)
  8. K. A. Khor, Y. W. Gua, C. H. Queka and P. Cheangb, Surface and Coatings Technology 168, 195 (2003) https://doi.org/10.1016/S0257-8972(03)00238-X
  9. Kumar RR, Wang M and Ducheyne P, Bioceramics 13, 231 (2000)
  10. Liu DM, Yang QZ, Troczynski T and Tseng WJJ, Biomaterials 23, 1679 (2002) https://doi.org/10.1016/S0142-9612(01)00295-2
  11. Hsieh MF, Perng LH and Chin TS, Mater Chem Phys 74, 245 (2002) https://doi.org/10.1016/S0254-0584(01)00474-6
  12. Ktessabi AM and Hamdi M, Surf Coat Tech 153, 10 (2002) https://doi.org/10.1016/S0257-8972(01)01519-5
  13. Hamdi M and Ektessabi AM, Thin Solid Films 398, 385 (2001) https://doi.org/10.1016/S0040-6090(01)01385-2
  14. Wang CK, Chern LJH, Ju CP, Ong HC and Chang RPH, Biomaterials 18, 1331 (1997) https://doi.org/10.1016/S0142-9612(97)00024-0
  15. Kweh SWK, Khor KA and Cheang P, Biomaterials 21, 1223 (2000) https://doi.org/10.1016/S0142-9612(99)00275-6
  16. MacDonald DE, Betts F, Stranick M, Doty S and Boskey AL, J Biomed Mater Res 54, 480 (2001) https://doi.org/10.1002/1097-4636(20010315)54:4<480::AID-JBM30>3.0.CO;2-T
  17. Lynn AK and DuQuesnay DL, Biomaterials 23, 1937 (2002) https://doi.org/10.1016/S0142-9612(01)00321-0
  18. Ding SJ, Su YM, Ju CP and Lin JHC, Biomaterials 22, 833 (2001) https://doi.org/10.1016/S0142-9612(00)00247-7
  19. Erlin Zhang, Chunming Zou and Cuoning Yu, Mater. Sci. Eng C, (In press)
  20. M. Inagaki, Y. Yokogawa and T. Kameyama, Journal of the European Ceramic Society 26, 495 (2006) https://doi.org/10.1016/j.jeurceramsoc.2005.07.030
  21. K.A. Khor, C.S. Yip and P. Cheang, Journal of Thermal Spray Technology 6, 109 (1997) https://doi.org/10.1007/BF02646320
  22. Z.L. Dong, K.A. Khor, C.H. Quek, T.J. White, and P. Cheang, Biomaterials 24, 97 (2003) https://doi.org/10.1016/S0142-9612(02)00267-3
  23. Huaxia Ji and P.M. Marquis, Biomaterials 14, 64 (1993) https://doi.org/10.1016/0142-9612(93)90077-F
  24. Laurence C. Chow, Limin Sun and Bernard Hockey, J. Res. Natl. Inst. Stand. Technol. 109, 543 (2004) https://doi.org/10.6028/jres.109.041
  25. Karlis A. Gross, Volfgangs Gross and Christopher C. Berndt, J. Am. Ceram. Soc. 81, 106 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02301.x
  26. Weisman and Charlotte, Welding Handbook 1, 7th edition, p.155, American Welding Society, Miami, Fla. (2001)
  27. W.D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to ceramics, p.550, John Wiley & Sons, New York (1995)
  28. E.H. Kim, Y. C. Kim, S. H. Han, S. C. Yang, J.-W. Park, and H. K. Seok, in preparation