• Title/Summary/Keyword: Therapeutic antibody

Search Result 199, Processing Time 0.024 seconds

Antibody Engineering for the Development of Therapeutic Antibodies

  • Kim, Sang Jick;Park, Youngwoo;Hong, Hyo Jeong
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.17-29
    • /
    • 2005
  • Therapeutic antibodies represent one of the fastest growing areas of the pharmaceutical industry. There are currently 19 monoclonal antibodies in the market that have been approved by the FDA and over 150 in clinical developments. Driven by innovation and technological developments, therapeutic antibodies are the second largest biopharmaceutical product category after vaccines. Antibodies have been engineered by a variety of methods to suit a particular therapeutic use. This review describes the structural and functional characteristics of antibody and the antibody engineering for the generation and optimization of therapeutic antibodies.

Affinity Maturation of an Anti-Hepatitis B Virus PreS1 Humanized Antibody by Phage Display

  • Yang, Gi-Hyeok;Yoon, Sun-Ok;Jang, Myung-Hee;Hong, Hyo-Jeong
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.528-533
    • /
    • 2007
  • In a previous study we generated an anti-Hepatitis B Virus (HBV) preS1 humanized antibody (HzKR127) that showed in vivo HBV-neutralizing activity in chimpanzees. However, the antigen-binding affinity of the humanized antibody may not be sufficient for clinical use and thus affinity maturation is required for better therapeutic efficacy. In this study, phage display technique was employed to increase the affinity of HzKR127. All six amino acid residues (Glu95-Tyr96-Asp97-Glu98-Ala99-Tyr100) in the heavy (H) chain complementary-determining region 3 (HCDR3) of HzKR127 were randomized and phage-displayed single chain Fv (scFv) library was constructed. After three rounds of panning, 12 different clones exhibiting higher antigen-binding activity than the wild type ScFv were selected and their antigen-binding specificity for the preS1 confirmed. Subsequently, five ScFv clones were converted to whole IgG and subjected to affinity determination. The results showed that two clones (B3 and A19) exhibited an approximately 6 fold higher affinities than that of HzKR127. The affinity-matured humanized antibodies may be useful in anti-HBV immunotherapy.

Guided Selection of Human Antibody Light Chains against TAG-72 Using a Phage Display Chain Shuffling Approach

  • Kim, Sang-Jick;Hong, Hyo-Jeong
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.572-577
    • /
    • 2007
  • To enhance therapeutic potential of murine monoclonal antibody, humanization by CDR grafting is usually used to reduce immunogenic mouse residues. Most humanized antibodies still have mouse residues critical for antigen binding, but the mouse residues may evoke immune responses in humans. Previously, we constructed a new humanized version (AKA) of mouse CC49 antibody specific for tumor-associated glycoprotein, TAG-72. In this study, to select a completely human antibody light chain against TAG-72, guided selection strategy using phage display was used. The heavy chain variable region (VH) of AKA was used to guide the selection of a human TAG-72-specific light chain variable region (VL) from a human VL repertoire constructed from human PBL. Most of the selected VLs were identified to be originated from the members of the human germline VK1 family, whereas the VL of AKA is more homologous to the VK4 family. Competition binding assay of the selected Fabs with mouse CC49 suggested that the epitopes of the Fabs overlap with that of CC49. In addition, they showed better antigen-binding affinity compared to parental AKA. The selected human VLs may be used to guide the selection of human VHs to get completely human anti-TAG72 antibody.

Generation and Characterization of a Monoclonal Antibody with Specificity for Mycoplasma arginini

  • Son, Yeon-Sung;Hong, Hyo-Jeong
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.547-552
    • /
    • 2007
  • Previously, we generated monoclonal antibodies (MAbs) that bound to the surface of human embryonic stem cells (hESCs) in an attempt to discover new hESC-specific surface markers. In this study, MAb 47-235 (IgG1, ${\kappa}$) was selected for further characterization. The MAb bound to the surface of undifferentiated hESCs but did not bind to mouse ESCs or mouse embryonic fibroblast cells in flow cytometric analysis. The antibody immunoprecipitated a 47 kDa protein from the lysates of cell surface-biotinylated hESCs. Identification of the protein by quadrupole time of flight tandem mass spectrometry revealed that 47-235 binds to Ag 243-5 protein of Mycoplasma arginini. BM-Cyclin treatment of the hESCs that reacted with 47-235 resulted in loss of mycoplasma DNA and the reactivity to 47-235. Nevertheless, the hESCs that were reactive to 47-235 maintained self-renewal and pluripotency and thus could be differentiated into three embryonic germ layers.

Radioimmunotherapy (I): Development of Radioimmunoconjugates (방사면역치료(I): 방사면역접합체 개발)

  • Choi, Tae-Hyun;Lim, Sang-Moo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.2
    • /
    • pp.66-73
    • /
    • 2006
  • Monoclonal antibodies are designed to bind specifically to certain antigen, give therapeutic effect to the target and to be produced in large scale with homogeneity. The monoclonal antibodies conjugated with radionuclide can deliver therapeutic irradiation to the target, and showed successful results in certain malignancies, which is known as radioimmunotherapy. The target-to-background ratio depends on the antigen expression in the target and normal tissues, which is related to the therapeutic efficacy and toxicity in radioimmunotherapy. For the solid tumor beta-ray energy should be high, but lower beta energy is better for the hematological malignancies. I-l31 is widely used in thyroid cancer with low cost and high availability. Labeling monoclonal antibody with I-131 is relatively simple and reproducible. Some preclinical data for the I-131 labeled monoclonal antibodies including acute toxicity and efficacy are available from already published literatures in KIRAMS, physician sponsored clinical trial protocols using Rituximab, KFDA approved anti-CD20 chimeric monoclonal antibody and I-131 were approved by KFDA and currently are ongoing.

Development of Rapid Antibody-based Therapeutic Platform Correspondence for New Viruses Using Antigen-specific Single Cell Memory B Cell Sorting Technology (항원 특이적 단일 기억 B 세포 분리를 이용한 신종 바이러스 대응 신속 항체 플랫폼 개발)

  • Jiyoon Seok;Suhan Jung;Ye Gi Han;Arum Park;Jung Eun Kim;Young Jo Song;Chi Ho Yu;Hyeongseok Yun;Se Hun Gu;Seung-Ho Lee;Yong Han Lee;Gyeunghaeng Hur;Woong Choi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.116-125
    • /
    • 2024
  • The COVID-19 pandemic is not over despite the emergency use authorization as can see recent COVID-19 daily confirmed cases. The viruses are not only difficult to diagnose and treat due to random mutations, but also pose threat human being because they have the potential to be exploited as biochemical weapons by genetic manipulation. Therefore, it is inevitable to the rapid antibody-based therapeutic platform to quickly respond to future pandemics by new/re-emerging viruses. Although numerous researches have been conducted for the fast development of antibody-based therapeutics, it is sometimes hard to respond rapidly to new viruses because of complicated expression or purification processes for antibody production. In this study, a novel rapid antibody-based therapeutic platform using single B cell sorting method and mRNA-antibody. High immunogenicity was caused to produce antibodies in vivo through mRNA-antigen inoculation. Subsequently, antigen-specific antibody candidates were selected and obtained using isolation of B cells containing antibody at the single cell level. Using the antibody-based therapeutic platform system in this study, it was confirmed that novel antigen-specific antibodies could be obtained in about 40 days, and suggested that the possibility of rapid response to new variant viruses.

Generation, Diversity Determination, and Application to Antibody Selection of a Human Naïve Fab Library

  • Kim, Sangkyu;Park, Insoo;Park, Seung Gu;Cho, Seulki;Kim, Jin Hong;S.Ipper, Nagesh;Choi, Sun Shim;Lee, Eung Suk;Hong, Hyo Jeong
    • Molecules and Cells
    • /
    • v.40 no.9
    • /
    • pp.655-666
    • /
    • 2017
  • We constructed a large $na{\ddot{i}}ve$ human Fab library ($3{\times}10^{10}$ colonies) from the lymphocytes of 809 human donors, assessed available diversities of the heavy-chain variable (VH) and ${\kappa}$ light-chain variable (VK) domain repertoires, and validated the library by selecting Fabs against 10 therapeutically relevant antigens by phage display. We obtained a database of unique 7,373 VH and 41,804 VK sequences by 454 pyrosequencing, and analyzed the repertoires. The distribution of VH and VK subfamilies and germline genes in our antibody repertoires slightly differed from those in earlier published natural antibody libraries. The frequency of somatic hypermutations (SHMs) in heavy-chain complementarity determining region (HCDR)1 and HCDR2 are higher compared with the natural IgM repertoire. Analysis of position-specific SHMs in CDRs indicates that asparagine, threonine, arginine, aspartate and phenylalanine are the most frequent non-germline residues on the antibody-antigen interface and are converted mostly from the germline residues, which are highly represented in germline SHM hotspots. The amino acid composition and length-dependent changes in amino acid frequencies of HCDR3 are similar to those in previous reports, except that frequencies of aspartate and phenylalanine are a little higher in our repertoire. Taken together, the results show that this antibody library shares common features of natural antibody repertoires and also has unique features. The antibody library will be useful in the generation of human antibodies against diverse antigens, and the information about the diversity of natural antibody repertoires will be valuable in the future design of synthetic human antibody libraries with high functional diversity.

Synergistic antitumor activity of a DLL4/VEGF bispecific therapeutic antibody in combination with irinotecan in gastric cancer

  • Kim, Da-Hyun;Lee, Seul;Kang, Hyeok Gu;Park, Hyun-Woo;Lee, Han-Woong;Kim, Dongin;Yoem, Dong-Hoon;Ahn, Jin-Hyung;Ha, Eunsin;You, Weon-Kyoo;Lee, Sang Hoon;Kim, Seok-Jun;Chun, Kyung-Hee
    • BMB Reports
    • /
    • v.53 no.10
    • /
    • pp.533-538
    • /
    • 2020
  • Notch signaling has been identified as a critical pathway in gastric cancer (GC) progression and metastasis, and inhibition of Delta-like ligand 4 (DLL4), a Notch ligand, is suggested as a potent therapeutic approach for GC. Expression of both DLL4 and vascular endothelial growth factor receptor 2 (VEGFR2) was similar in the malignant tissues of GC patients. We focused on vascular endothelial growth factor (VEGF), a known angiogenesis regulator and activator of DLL4. Here, we used ABL001, a DLL4/VEGF bispecific therapeutic antibody, and investigated its therapeutic effect in GC. Treatment with human DLL4 therapeutic antibody (anti-hDLL4) or ABL001 slightly reduced GC cell growth in monolayer culture; however, they significantly inhibited cell growth in 3D-culture, suggesting a reduction in the cancer stem cell population. Treatment with anti-hDLL4 or ABL001 also decreased GC cell migration and invasion. Moreover, the combined treatment of irinotecan with anti-hDLL4 or ABL001 showed synergistic antitumor activity. Both combination treatments further reduced cell growth in 3D-culture as well as cell invasion. Interestingly, the combination treatment of ABL001 with irinotecan synergistically reduced the GC burden in both xenograft and orthotopic mouse models. Collectively, DLL4 inhibition significantly decreased cell motility and stem-like phenotype and the combination treatment of DLL4/VEGF bispecific therapeutic antibody with irinotecan synergistically reduced the GC burden in mouse models. Our data suggest that ABL001 potentially represents a potent agent in GC therapy. Further biochemical and pre-clinical studies are needed for its application in the clinic.

Synthetic approach to the generation of antibody diversity

  • Shim, Hyunbo
    • BMB Reports
    • /
    • v.48 no.9
    • /
    • pp.489-494
    • /
    • 2015
  • The in vitro antibody discovery technologies revolutionized the generation of target-specific antibodies that traditionally relied on the humoral response of immunized animals. An antibody library, a large collection of diverse, pre-constructed antibodies, can be rapidly screened using in vitro display technologies such as phage display. One of the keys to successful in vitro antibody discovery is the quality of the library diversity. Antibody diversity can be obtained either from natural B-cell sources or by the synthetic methods that combinatorially generate random nucleotide sequences. While the functionality of a natural antibody library depends largely upon the library size, various other factors can affect the quality of a synthetic antibody library, making the design and construction of synthetic antibody libraries complicated and challenging. In this review, we present various library designs and diversification methods for synthetic antibody library. From simple degenerate oligonucleotide synthesis to trinucleotide synthesis to physicochemically optimized library design, the synthetic approach is evolving beyond the simple emulation of natural antibodies, into a highly sophisticated method that is capable of producing high quality antibodies suitable for therapeutic, diagnostic, and other demanding applications. [BMB Reports 2015; 48(9): 489-494]

Antibody radiolabeling with diagnostic Cu-64 and therapeutic Lu-177 radiometal

  • Abhinav Bhise;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.1
    • /
    • pp.45-49
    • /
    • 2022
  • With the development of monoclonal antibodies, therapeutic or diagnostic radioisotope has been successfully delivered at tumor sites with high selectivity for antigens. Different approaches have been applied to improve the tumor-to-normal ratio by considering the in vivo stability of radioimmunoconjugates as a prerequisite. Various stable and inert antibody radiolabeling techniques for radioimmunoconjugate preparation have been extensively evaluated to enhance in vivo stability. Antibody radiolabeling techniques should be rapid and easy; they should not disrupt the immunoreactivity and in vivo behavior of antibodies, which are coupled with a bifunctional chelator (BFC) to stably coordinate with a radiometal. For the design of BFCs, radiometal coordination properties must be considered. However, various diagnostic radionuclides, such as 89Zr, 64Cu, 68Ga, 111ln, and 99mTc, or therapeutic radionuclides, such as 177Lu, 67Cu, 90Y, and 225Ac, have been increasingly used for antibody radiolabeling. In addition to useful radionuclides, 64Cu and 177Lu with the most accessible or the highest production rates in many countries should be considered. In this review, we mainly discussed antibody radiolabeling techniques and conditions that involve 64Cu and 177Lu radiometals.